1
|
Luo W, Chi S, Wang J, Yu X, Tong J. Comparative transcriptomic analyses of brain-liver-muscle in channel catfish (Ictalurus punctatus) with differential growth rate. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101178. [PMID: 38128380 DOI: 10.1016/j.cbd.2023.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Growth is an important economically trait for aquatic animals. The popularity of farmed channel catfish (Ictalurus punctatus) in China has recently surged, prompting a need for research into the genetic mechanisms that drive growth and development to expedite the selection of fast-growing variants. In this study, the brain, liver and muscle transcriptomes of channel catfish between fast-growing and slow-growing groups were analyzed using RNA-Seq. Totally, 63, 110 and 86 differentially expressed genes (DEGs) were from brain, liver and muscle tissues. DEGs are primarily involved in growth, development, metabolism and immunity, which are related to the growth regulation of channel catfish, such as growth hormone receptor b (ghrb), fibroblast growth factor receptor 4 (fgfr4), bone morphogenetic protein 1a (bmp1a), insulin-like growth factor 2a (igf2a), collagen, type I, alpha 1a (col1a1a), acyl-CoA synthetase long chain family member 2 (acsl2) and caveolin 1 (cav1). This study advances our knowledge of the genetic mechanisms accounting for differences in growth rate and offers crucial gene resources for future growth-related molecular breeding programs in channel catfish.
Collapse
Affiliation(s)
- Weiwei Luo
- Jiangsu Union Technical Institute, Yancheng Bioengineering Branch, Yancheng Aquatic Science Research Institute, Yancheng 224001, China
| | - Shuang Chi
- Jiangsu Union Technical Institute, Yancheng Bioengineering Branch, Yancheng Aquatic Science Research Institute, Yancheng 224001, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
2
|
Araújo BC, Barbosa DA, Honji RM, Branco GS, Menegidio FB, Marques VH, Moreira RG, Kitahara MV, Rombenso AN, de Mello PH, Hilsdorf AWS. Post-feeding Molecular Responses of Cobia (Rachycentron canadum): RNA-Sequencing as a Tool to Evaluate Postprandial Effects in Hepatic Lipid Metabolism. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10209-4. [PMID: 37162622 DOI: 10.1007/s10126-023-10209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
We used transcriptome sequencing to investigate the hepatic postprandial responses of Rachycentron canadum (cobia), an important commercial fish species. In total, 150 cobia juveniles (50 per tank, triplicate) were fed ad libitum with a commercial diet for 7 days, fasted for 24 h, and fed for 10 min. The liver was sampled 10 min prior to feeding and 30 min, 1, 2, 4, 8, 12, and 24 h after the feeding event. Each sample was evaluated in terms of liver fatty acid profile and gene expression. Differential gene expressions were evaluated, focusing on fatty acid synthesis and oxidation pathways. In general, the liver fatty acid profile reflected diet composition. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) levels increased at 8 to 12 h but decreased at 24 h after the feeding event. A high number of differentially expressed genes (DEGs) were observed comparing fish that fasted for 8 h with those fasted for 30 min and 24 h, while a reduced number of DEGs was observed comparing individuals who fasted for 30 min compared with those who fasted for 24 h. Similarly, the main differences in the expression of genes related to the fatty acid biosynthesis and oxidation pathways were noticed in individuals who fasted for 8 h compared with those who fasted for 30 min and 24 h. The results suggested that the adequate time to sample the individuals ranged between 8 and 12 h after the meal since, apparently, after 24 h, differential gene expression was not necessarily influenced by food intake.
Collapse
Affiliation(s)
- Bruno C Araújo
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08701-970, Brazil.
| | - David Aciole Barbosa
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08701-970, Brazil
| | - Renato M Honji
- Centro de Biologia Marinha da, Universidade de São Paulo (CEBIMar/USP, Rodovia Manoel Hipólito Do Rego, Km 131, 5, São Sebastião, São Paulo, 11612-109, Brazil
| | - Giovana S Branco
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, 05508-090, Brazil
| | - Fabiano B Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08701-970, Brazil
| | - Victor H Marques
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, 05508-090, Brazil
| | - Renata G Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, 05508-090, Brazil
| | - Marcelo V Kitahara
- Centro de Biologia Marinha da, Universidade de São Paulo (CEBIMar/USP, Rodovia Manoel Hipólito Do Rego, Km 131, 5, São Sebastião, São Paulo, 11612-109, Brazil
| | - Artur N Rombenso
- CSIRO Agriculture and Food, Livestock & Aquaculture Program, Bribie Island Research Center, Woorim, QLD, 4507, Australia
| | - Paulo H de Mello
- Beacon Development Company, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Alexandre W S Hilsdorf
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08701-970, Brazil
| |
Collapse
|
3
|
Lv Y, Amanullah S, Liu S, Zhang C, Liu H, Zhu Z, Zhang X, Gao P, Luan F. Comparative Transcriptome Analysis Identified Key Pathways and Genes Regulating Differentiated Stigma Color in Melon ( Cucumis melo L.). Int J Mol Sci 2022; 23:ijms23126721. [PMID: 35743161 PMCID: PMC9224399 DOI: 10.3390/ijms23126721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Stigma color is an important morphological trait in many flowering plants. Visual observations in different field experiments have shown that a green stigma in melons is more attractive to natural pollinators than a yellow one. In the current study, we evaluated the characterization of two contrasted melon lines (MR-1 with a green stigma and M4-7 with a yellow stigma). Endogenous quantification showed that the chlorophyll and carotenoid content in the MR-1 stigmas was higher compared to the M4-7 stigmas. The primary differences in the chloroplast ultrastructure at different developmental stages depicted that the stigmas of both melon lines were mainly enriched with granum, plastoglobulus, and starch grains. Further, comparative transcriptomic analysis was performed to identify the candidate pathways and genes regulating melon stigma color during key developmental stages (S1–S3). The obtained results indicated similar biological processes involved in the three stages, but major differences were observed in light reactions and chloroplast pathways. The weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) uncovered a “black” network module (655 out of 5302 genes), mainly corresponding to light reactions, light harvesting, the chlorophyll metabolic process, and the chlorophyll biosynthetic process, and exhibited a significant contribution to stigma color. Overall, the expression of five key genes of the chlorophyll synthesis pathway—CAO (MELO03C010624), CHLH (MELO03C007233), CRD (MELO03C026802), HEMA (MELO03C011113), POR (MELO03C016714)—were checked at different stages of stigma development in both melon lines using quantitative real time polymerase chain reaction (qRT-PCR). The results exhibited that the expression of these genes gradually increased during the stigma development of the MR-1 line but decreased in the M4-7 line at S2. In addition, the expression trends in different stages were the same as RNA-seq, indicating data accuracy. To sum up, our research reveals an in-depth molecular mechanism of stigma coloration and suggests that chlorophyll and related biological activity play an important role in differentiating melon stigma color.
Collapse
Affiliation(s)
- Yuanzuo Lv
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Sikandar Amanullah
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chen Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xian Zhang
- Horticulture College of Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.G.); (F.L.)
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.G.); (F.L.)
| |
Collapse
|
4
|
Monteiro M, Perdiguero P, Couto A, Serra CR, Pereiro P, Novoa B, Figueras A, Ribeiro L, Pousão-Ferreira P, Tafalla C, Oliva-Teles A, Enes P, Secombes CJ, Díaz-Rosales P. Comprehensive transcriptome profiling and functional analysis of the meagre (Argyrosomus regius) immune system. FISH & SHELLFISH IMMUNOLOGY 2022; 123:506-520. [PMID: 35351613 DOI: 10.1016/j.fsi.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Meagre (Argyrosomus regius) belongs to the family Sciaenidae and is a promising candidate for Mediterranean aquaculture diversification. As a relatively recent species in aquaculture, the physiological consequences of the immune system activation in meagre are understudied. Spleen, as a primary lymphoid organ has an essential role in meagre immune and inflammatory responses. In this study, we have evaluated the in vivo effects of lipopolysaccharide (LPS) on the spleen transcriptome of meagre by RNA-seq analysis at 4 and 24 h after injection.
Collapse
Affiliation(s)
- M Monteiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal.
| | - P Perdiguero
- Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain; Departamento de Genética, Fisiología y Microbiología. Universidad Complutense de Madrid, Ciudad universitaria s/n, 28040, Madrid, Spain
| | - A Couto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - C R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Pereiro
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - B Novoa
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - A Figueras
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - L Ribeiro
- IPMA - Portuguese Institute for Sea and Atmosphere / EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n 8700-194 Olhão, Portugal
| | - P Pousão-Ferreira
- IPMA - Portuguese Institute for Sea and Atmosphere / EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n 8700-194 Olhão, Portugal
| | - C Tafalla
- Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain
| | - A Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Enes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, AB24 2TZ Aberdeen, UK
| | - P Díaz-Rosales
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
5
|
Yan W, Qiao Y, He J, Qu J, Liu Y, Zhang Q, Wang X. Molecular Mechanism Based on Histopathology, Antioxidant System and Transcriptomic Profiles in Heat Stress Response in the Gills of Japanese Flounder. Int J Mol Sci 2022; 23:ijms23063286. [PMID: 35328705 PMCID: PMC8955770 DOI: 10.3390/ijms23063286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
As an economically important flatfish in Asia, Japanese flounder is threatened by continuously rising temperatures due to global warming. To understand the molecular responses of this species to temperature stress, adult Japanese flounder individuals were treated with two kinds of heat stress—a gradual temperature rise (GTR) and an abrupt temperature rise (ATR)—in aquaria under experimental conditions. Changes in histopathology, programmed cell death levels and the oxidative stress status of gills were investigated. Histopathology showed that the damage caused by ATR stress was more serious. TUNEL signals confirmed this result, showing more programmed cell death in the ATR group. In addition, reactive oxygen species (ROS) levels and the 8-O-hDG contents of both the GTR and ATR groups increased significantly, and the total superoxide dismutase (T-SOD) activities and total antioxidant capacity (T-AOC) levels decreased in the two stressed groups, which showed damage to antioxidant systems. Meanwhile, RNA-seq was utilized to illustrate the molecular mechanisms underyling gill damage. Compared to the control group of 18 °C, 507 differentially expressed genes (DEGs) were screened in the GTR group; 341 were up-regulated and 166 were down-regulated, and pathway enrichment analysis indicated that they were involved in regulation and adaptation, including chaperone and folding catalyst pathways, the mitogen-activated protein kinase signaling (MAPK) pathway and DNA replication protein pathways. After ATR stress, 1070 DEGs were identified, 627 were up-regulated and 423 were down-regulated, and most DEGs were involved in chaperone and folding catalyst and DNA-related pathways, such as DNA replication proteins and nucleotide excision repair. The annotation of DEGs showed the great importance of heat shock proteins (HSPs) in protecting Japanese flounder from heat stress injury; 12 hsp genes were found after GTR, while 5 hsp genes were found after ATR. In summary, our study records gill dysfunction after heat stress, with different response patterns observed in the two experimental designs; chaperones were activated to defend heat stress after GTR, while replication was almost abandoned due to the severe damage consequent on ATR stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xubo Wang
- Correspondence: ; Tel.: +86-532-82031986; Fax: +86-532-82031802
| |
Collapse
|
6
|
Aciole Barbosa D, Araújo BC, Branco GS, Simeone AS, Hilsdorf AWS, Jabes DL, Nunes LR, Moreira RG, Menegidio FB. Transcriptomic Profiling and Microsatellite Identification in Cobia (Rachycentron canadum), Using High-Throughput RNA Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:255-262. [PMID: 34855031 DOI: 10.1007/s10126-021-10081-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Cobia (Rachycentron canadum) is a marine teleost species with great productive potential worldwide. However, the genomic information currently available for this species in public databases is limited. Such lack of information hinders gene expression assessments that might bring forward novel insights into the physiology, ecology, evolution, and genetics of this potential aquaculture species. In this study, we report the first de novo transcriptome assembly of R. canadum liver, improving the availability of novel gene sequences for this species. Illumina sequencing of liver transcripts generated 1,761,965,794 raw reads, which were filtered into 1,652,319,304 high-quality reads. De novo assembly resulted in 101,789 unigenes and 163,096 isoforms, with an average length of 950.61 and 1,617.34 nt, respectively. Moreover, we found that 126,013 of these transcripts bear potentially coding sequences, and 125,993 of these elements (77.3%) correspond to functionally annotated genes found in six different databases. We also identified 701 putative ncRNA and 35,414 putative lncRNA. Interestingly, homologues for 410 of these putative lncRNAs have already been observed in previous analyses with Danio rerio, Lates calcarifer, Seriola lalandi dorsalis, Seriola dumerili, or Echeneis naucrates. Finally, we identified 7894 microsatellites related to cobia's putative lncRNAs. Thus, the information derived from the transcriptome assembly described herein will likely assist future nutrigenomics and breeding programs involving this important fish farming species.
Collapse
Affiliation(s)
- David Aciole Barbosa
- Center of Biotechnology, University of Mogi das Cruzes, Av. Dr. Cândido X. de Almeida e Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | | | - Giovana Souza Branco
- Department of Physiology, Bioscience Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Alexandre S Simeone
- Center of Biotechnology, University of Mogi das Cruzes, Av. Dr. Cândido X. de Almeida e Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Alexandre W S Hilsdorf
- Center of Biotechnology, University of Mogi das Cruzes, Av. Dr. Cândido X. de Almeida e Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Daniela L Jabes
- Center of Biotechnology, University of Mogi das Cruzes, Av. Dr. Cândido X. de Almeida e Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Luiz R Nunes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-580, Brazil
| | - Renata G Moreira
- Department of Physiology, Bioscience Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Fabiano B Menegidio
- Center of Biotechnology, University of Mogi das Cruzes, Av. Dr. Cândido X. de Almeida e Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil.
| |
Collapse
|
7
|
Yang T, Liu J, Li X, Amanullah S, Lu X, Zhang M, Zhang Y, Luan F, Liu H, Wang X. Transcriptomic Analysis of Fusarium oxysporum Stress-Induced Pathosystem and Screening of Fom-2 Interaction Factors in Contrasted Melon Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961586. [PMID: 35937314 PMCID: PMC9354789 DOI: 10.3389/fpls.2022.961586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 05/03/2023]
Abstract
Fusarium wilt is one of the most destructive and less controllable diseases in melon, which is usually caused by fusarium oxysporum. In this study, transcriptome sequencing and Yeast Two-Hybrid (Y2H) methods were used for quantification of differentially expressed genes (DEGs) involved in fusarium oxysporum (f. sp. melonis race 1) stress-induced mechanisms in contrasted melon varieties (M4-45 "susceptible" and MR-1 "resistant"). The interaction factors of Fom-2 resistance genes were also explored in response to the plant-pathogen infection mechanism. Transcriptomic analysis exhibited total 1,904 new genes; however, candidate DEGs analysis revealed a total of 144 specific genes (50 upregulated and 94 downregulated) for M4-45 variety and 104 specific genes (71 upregulated and 33 downregulated) for MR-1 variety, respectively. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway depicted some candidate DEGs, including Phenylalanine metabolism, phenylpropane biosynthesis, plants-pathogen interaction, and signal transduction of plant hormones, which were mainly involved in disease resistance metabolic pathways. The weighted gene co-expression network analysis (WGCNA) analysis revealed a strong correlation module and exhibited the disease resistance-related genes encoding course proteins, transcription factors, protein kinase, benzene propane biosynthesis path, plants-pathogen interaction pathway, and glutathione S-transferase. Meanwhile, the resistance-related specific genes expression was relatively abundant in MR-1 compared to the M4-45, and cell wall-associated receptor kinases (MELO3C008452 and MELO3C008453), heat shock protein (Cucumis_melo_newGene_172), defensin-like protein (Cucumis_melo_newGene_5490), and disease resistance response protein (MELO3C016325), activator response protein (MELO3C021623), leucine-rich repeat receptor protein kinase (MELO3C024412), lactyl glutathione ligase (Cucumis_melo_newGene_36), and unknown protein (MELO3C007588) were persisted by exhibiting the upregulated expressions. At the transcription level, the interaction factors between the candidate genes in response to the fusarium oxysporum induced stress, and Y2H screening signified the main contribution of MYB transcription factors (MELO3C009678 and MELO3C014597), BZIP (MELO3C011839 and MELO3C019349), unknown proteins, and key enzymes in the ubiquitination process (4XM334FK014). The candidate genes were further verified in exogenously treated melon plants with f. oxysporum (Fom-2, Race 1), Abscisic acid (ABA), Methyl Jasmonite (MeJA), and Salicylic acid (SA), using the fluorescence quantitative polymerase chain reaction (qRT-PCR) analysis. The overall expression results indicated that the SA signal pathway is involved in effective regulation of the Fom-2 gene activity.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jiajun Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xiaomei Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xueyan Lu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Mingchong Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yanhang Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- *Correspondence: Hongyu Liu,
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- Xuezheng Wang,
| |
Collapse
|
8
|
The sea bass Dicentrarchus labrax as a marine model species in immunology: Insights from basic and applied research. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Dai YF, Shen YB, Wang ST, Zhang JH, Su YH, Bao SC, Xu XY, Li JL. RNA-Seq Transcriptome Analysis of the Liver and Brain of the Black Carp (Mylopharyngodon piceus) During Fasting. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:389-401. [PMID: 33864541 DOI: 10.1007/s10126-021-10032-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The black carp (Mylopharyngodon piceus) is an important carnivorous freshwater-cultured species. To understand the molecular basis underlying the response of black carp to fasting, we used RNA-Seq to analyze the liver and brain transcriptome of fasting fish. Annotation to the NCBI database identified 66,609 unigenes, of which 22,841 were classified into the Gene Ontology database and 15,925 were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Comparative analysis of the expression profile between fasting and normal feeding fish revealed 13,737 differentially expressed genes (P < 0.05), of which 12,480 were found in liver tissue and 1257 were found in brain tissue. The KEGG pathway analysis showed significant differences in expression of genes involved in metabolic and immune pathways, such as the insulin signaling pathway, PI3K-Akt signaling pathway, cAMP signaling pathway, FoxO signaling pathway, AMPK signaling pathway, endocytosis, and apoptosis. Quantitative real-time PCR analysis confirmed that expression of the genes encoding the factors involved in those pathways differed between fasting and feeding fish. These results provide valuable information about the molecular response mechanism of black carp under fasting conditions.
Collapse
Affiliation(s)
- Ya-Fan Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Bang Shen
- College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shen-Tong Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia-Hua Zhang
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Hong Su
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Sheng-Chen Bao
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao-Yan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia-Le Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, P. R. China.
| |
Collapse
|
10
|
Powell D, Ngo PT, Nguyen HN, Knibb W, Elizur A. Transcriptomic responses of saline-adapted Nile tilapia (Oreochromis niloticus) to rearing in both saline and freshwater. Mar Genomics 2021; 60:100879. [PMID: 34023275 DOI: 10.1016/j.margen.2021.100879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
The Nile tilapia, Oreochromis niloticus, is an important species for global aquaculture. Recently, a single genetic line of Nile tilapia was developed using estimated breeding values (EBVs) for body weight under moderately saline water that showed significant improvement in growth performance. To explore the molecular mechanisms underlying this enhanced growth capacity, RNA-Seq was used to profile differences in gene expression in the liver and pituitary gland of high- and low-growth performance families of male Nile tilapia progeny, reared in either saline or freshwater environments. Comparisons of tissues from high- and low-EBV families, and also between fish reared in either saline or freshwater, revealed 142 and 2208 differentially expressed genes (DEGs), respectively. DEGs identified between the EBV groups comprised a number of genes involved in the regulation of growth and reproduction. We found an overexpression of hormone genes involved in growth-inhibition in the pituitary of Low-EBV tilapia including 2 somatostatin genes (GHIH), corticoliberin (CRH) and tachykinin-3-like protein. Furthermore, several genes associated with the cAMP pathway were underexpressed in low-EBV tilapia pituitary together with several early response genes. This study provides insight into the transcriptomic factors associated with growth performance in saline-adapted Nile tilapia reared in environments with high and low salinity levels and provides valuable knowledge for the future development of selection strategies to improve growth performance in this species.
Collapse
Affiliation(s)
- Daniel Powell
- Department of Biology, Lund University, 223 62 Lund, Sweden; Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| | - Phu Thoa Ngo
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia; Mavin Aquaculture, Mavin Group, Hudland Tower Building, No. 6 Nguyen Huu Tho, Hoang Liet Ward, Hoang Mai District, Hanoi, Viet Nam; Research Institute for Aquaculture No.1, Dinh Bang, Tu Son, Bac Ninh, Viet Nam.
| | - Hong Nguyen Nguyen
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| | - Wayne Knibb
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| | - Abigail Elizur
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| |
Collapse
|
11
|
Jia YY, Chi ML, Jiang WP, Liu SL, Cheng S, Zheng JB, Gu ZM. Identification of reproduction-related genes and pathways in the Culter alburnus H-P-G axis and characterization of their expression differences in malformed and normal gynogenetic ovaries. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1-20. [PMID: 33156507 DOI: 10.1007/s10695-020-00859-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
This study applied RNA-seq technology to discover reproduction-related genes and pathways in female topmouth culter brain (including pituitary) and ovarian tissues. In functional analysis, 2479 and 2605 unigenes in the brain and ovary tissue were assigned to the "reproductive process" subcategory in addition to the 2660 and 2845 unigenes assigned to the "reproduction" subcategory. Twenty-three complete cDNA sequences were identified through the different gene expression (DGE) approach from five reproduction-related pathways (MAPK signaling pathway, neuroactive ligand-receptor interaction pathway, gonadotropin-releasing hormone signaling pathway, oocyte meiosis pathway, and steroid biosynthesis pathway). The expression levels of 16 candidate genes using qPCR in this study were in accordance with the results of transcriptome analysis. In addition, the expression levels of the FSH, 3β-HSD, PGR, and NPYR genes in malformed gynogenetic ovaries were considerably low, which was consistent with the progress of oocytogenesis in the ovaries of topmouth culter. The high expression of these four genes in the ovaries of normal topmouth culter suggested they might involve in the preparation for the shift of oogenesis to ovulation. Hence, our work identified a set of annotated gene products that are candidate factors affecting reproduction in the topmouth culter H-P-G axis. These results could be essential for further research in functional genomics and genetic editing for topmouth culter reproduction.
Collapse
Affiliation(s)
- Yong Y Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Mei L Chi
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Wen P Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Shi L Liu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Shun Cheng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jian B Zheng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Zhi M Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China.
| |
Collapse
|
12
|
Buonocore F, Scapigliati G, Pallavicini A, Gerdol M. Identification of an IgD/IgT chimera in the European sea bass (Dicentrarchus labrax L.). FISH & SHELLFISH IMMUNOLOGY 2020; 105:224-232. [PMID: 32711154 DOI: 10.1016/j.fsi.2020.07.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Three classes of immunoglobulins have been identified in Teleosts: IgM, IgT/Z and IgD. They are fundamental for fish immune responses and, therefore, their functional activities are heavily investigated. In this paper, we describe the identification of a new IgD/IgT chimera in sea bass (Dicentrarchus labrax) from a gills transcriptome. This transcript joined the first six constant domains of the IgD chain with the two terminal constant domains of IgT, generating a long in-frame coding sequence with a junction between the canonical δ6 exon splicing donor site and the τ3 exon splicing acceptor site. Studies performed on genomic DNA confirmed the presence of the sequence and identifies and intronic region of 656 bp within this joining region. The basal expression of the IgD/IgT chimera was investigated both in silico and in vivo: high level of expression was found in gills, gut and head kidney. Moreover, IgD/IgT transcripts were up-regulated after in vitro stimulation of sea bass HK leukocytes with LPS. The IgD/IgT chimera was found also in two congener species, Morone saxatilis and Morone chrysops. It is not possible to have a precise idea on the evolutionary scenario that lead to the appearance of this sequence due to the lack of genomic information, but we could speculate that an ancestral duplication of the entire IgH locus was followed by the chimerization of Cδ/Cτ in one of the two loci. Finally, the IgD/IgT high basal expression in tissues and organs fundamental for sea bass immune response and its modulation after LPS stimulation provide a very preliminary indication that this unusual Ig variant could have a functional activity.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| |
Collapse
|
13
|
Bertel-Sevilla A, Alzate JF, Olivero-Verbel J. De novo assembly and characterization of the liver transcriptome of Mugil incilis (lisa) using next generation sequencing. Sci Rep 2020; 10:13957. [PMID: 32811897 PMCID: PMC7435268 DOI: 10.1038/s41598-020-70902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Mugil incilis (lisa) is an important commercial fish species in many countries, living along the coasts of the western Atlantic Ocean. It has been used as a model organism for environmental monitoring and ecotoxicological investigations. Nevertheless, available genomic and transcriptomic information for this organism is extremely deficient. The aim of this study was to characterize M. incilis hepatic transcriptome using Illumina paired-end sequencing. A total of 32,082,124 RNA-Seq read pairs were generated utilizing the HiSeq platform and subsequently cleaned and assembled into 93,912 contigs (N50 = 2,019 bp). The analysis of species distribution revealed that M. incilis contigs had the highest number of hits to Stegastes partitus (13.4%). Using a sequence similarity search against the public databases GO and KEGG, a total of 7,301 and 16,967 contigs were annotated, respectively. KEGG database showed genes related to environmental information, metabolism and organismal system pathways were highly annotated. Complete or partial coding DNA sequences for several candidate genes associated with stress responses/detoxification of xenobiotics, as well as housekeeping genes, were employed to design primers that were successfully tested and validated by RT-qPCR. This study presents the first transcriptome resources for Mugil incilis and provides basic information for the development of genomic tools, such as the identification of RNA markers, useful to analyze environmental impacts on this fish Caribbean species.
Collapse
Affiliation(s)
- Angela Bertel-Sevilla
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia.
| |
Collapse
|
14
|
Transcriptome analysis and weighted gene co-expression network reveals potential genes responses to heat stress in turbot Scophthalmus maximus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100632. [PMID: 31715507 DOI: 10.1016/j.cbd.2019.100632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022]
Abstract
Turbot (Scophthalmus maximus) is an economically important marine fish cultured in China. In this study, we performed transcriptome gene expression profiling of kidney tissue in turbot exposed to heat stress (20, 23, 25 and 28 °C); control fish were maintained at 14 °C. We investigated gene relationships based on weighted gene co-expression network analysis (WGCNA). Accordingly, enrichment analyses of GO terms and KEGG pathways showed that several pathways (e.g., fat metabolism, cell apoptosis, immune system, and insulin signaling) may be involved in the response of turbot to heat stress. Moreover, via WGCNA, we identified 19 modules: the dark grey module was mainly enriched in pathways associated with fat metabolism and the FOXO and Jak-STAT signaling pathways. The ivory module was significantly enriched in the P53 signaling pathway. Furthermore, the key hub genes CBP, AKT3, CCND2, PIK3r2, SCOS3, mdm2, cyc-B, and p48 were enriched in the FOXO, Jak-STAT and P53 signaling pathways. This is the first study reporting co-expression patterns of a gene network after heat stress in marine fish. Our results may contribute to our understanding of the underlying molecular mechanism of thermal tolerance.
Collapse
|
15
|
Vandeputte M, Gagnaire PA, Allal F. The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet 2019; 50:195-206. [PMID: 30883830 PMCID: PMC6593706 DOI: 10.1111/age.12779] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 01/13/2023]
Abstract
The European sea bass (Dicentrarchus labrax L.) is a marine fish of key economic and cultural importance in Europe. It is now more an aquaculture than a fisheries species (>96% of the production in 2016), although modern rearing techniques date back only from the late 1980s. It also has high interest for evolutionary studies, as it is composed of two semispecies (Atlantic and Mediterranean lineages) that have come into secondary contact following the last glaciation. Based on quantitative genetics studies of most traits of interest over the past 10–15 years, selective breeding programs are now applied to this species, which is at the beginning of its domestication process. The availability of a good quality reference genome has accelerated the development of new genomic resources, including SNP arrays that will enable genomic selection to improve genetic gain. There is a need to improve feed efficiency, both for economic and environmental reasons, but this will require novel phenotyping approaches. Further developments will likely focus on the understanding of genotype‐by‐environment interactions, which will be important both for efficient breeding of farmed stocks and for improving knowledge of the evolution of natural populations. At the interface between both, the domestication process must be better understood to improve production and also to fully evaluate the possible impact of aquaculture escapees on wild populations. The latter is an important question for all large‐scale aquaculture productions.
Collapse
Affiliation(s)
- M Vandeputte
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,MARBEC, Ifremer-CNRS-IRD-UM, Université de Montpellier, 34250, Palavas-les-Flots, France
| | - P-A Gagnaire
- Institut des Sciences de l'Evolution de Montpellier, UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - F Allal
- MARBEC, Ifremer-CNRS-IRD-UM, Université de Montpellier, 34250, Palavas-les-Flots, France
| |
Collapse
|
16
|
Araújo BC, Wade NM, de Mello PH, de A Rodrigues-Filho J, Garcia CEO, de Campos MF, Botwright NA, Hashimoto DT, Moreira RG. Characterization of lipid metabolism genes and the influence of fatty acid supplementation in the hepatic lipid metabolism of dusky grouper (Epinephelus marginatus). Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:1-9. [PMID: 29432806 DOI: 10.1016/j.cbpa.2018.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/26/2017] [Accepted: 01/30/2018] [Indexed: 01/10/2023]
Abstract
Dusky grouper is an important commercial fish species in many countries, but some factors such as overfishing has significantly reduced their natural stocks. Aquaculture emerges as a unique way to conserve this species, but very little biological information is available, limiting the production of this endangered species. To understand and generate more knowledge about this species, liver transcriptome sequencing and de novo assembly was performed for E. marginatus by Next Generation Sequencing (NGS). Sequences obtained were used as a tool to validate the presence of key genes relevant to lipid metabolism, and their expression was quantified by qPCR. Moreover, we investigated the influence of supplementing different dietary fatty acids on hepatic lipid metabolism. The results showed that the different fatty acids added to the diet dramatically changed the gene expression of some key enzymes associated with lipid metabolism as well as hepatic fatty acid profiles. Elongase 5 gene expression was shown to influence intermediate hepatic fatty acid elongation in all experimental groups. Hepatic triglycerides reflected the diet composition more than hepatic phospholipids, and were characterized mainly by the high percentage of 18:3n3 in animals fed with a linseed oil rich diet. Results for the saturated and monounsaturated fatty acids suggest a self-regulatory potential for retention and oxidation processes in liver, since in general the tissues did not directly reflect these fatty acid diet compositions. These results indicated that genes involved in lipid metabolism pathways might be potential biomarkers to assess lipid requirements in the formulated diet for this species.
Collapse
Affiliation(s)
- Bruno C Araújo
- Instituto de Biociências, Departamento de Fisiologia da Universidade de São Paulo, Rua do Matão, trav. 14, n.321, SP 05508-090, Brazil; Centro de Biologia Marinha da Universidade de São Paulo (CEBIMar/USP), Rodovia Manoel Hipólito do Rego, km 131,5, São Sebastião, SP CEP 11600-000, Brazil.
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Paulo H de Mello
- Instituto de Biociências, Departamento de Fisiologia da Universidade de São Paulo, Rua do Matão, trav. 14, n.321, SP 05508-090, Brazil; Centro de Biologia Marinha da Universidade de São Paulo (CEBIMar/USP), Rodovia Manoel Hipólito do Rego, km 131,5, São Sebastião, SP CEP 11600-000, Brazil
| | - Jandyr de A Rodrigues-Filho
- Fundação Instituto de Pesca do Estado do Rio de Janeiro, Praça Fonseca Ramos, s/n., Centro, Niterói, RJ 24030-020, Brazil
| | - Carlos E O Garcia
- Instituto de Biociências, Departamento de Fisiologia da Universidade de São Paulo, Rua do Matão, trav. 14, n.321, SP 05508-090, Brazil; Centro de Biologia Marinha da Universidade de São Paulo (CEBIMar/USP), Rodovia Manoel Hipólito do Rego, km 131,5, São Sebastião, SP CEP 11600-000, Brazil
| | - Mariana F de Campos
- Instituto de Biociências, Departamento de Fisiologia da Universidade de São Paulo, Rua do Matão, trav. 14, n.321, SP 05508-090, Brazil; Centro de Biologia Marinha da Universidade de São Paulo (CEBIMar/USP), Rodovia Manoel Hipólito do Rego, km 131,5, São Sebastião, SP CEP 11600-000, Brazil
| | - Natasha A Botwright
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Diogo T Hashimoto
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Centro de Aquicultura (CAUNESP), Via de acesso Prof. Paulo Donato Castelane s/n., Jaboticabal, SP CEP 14884-900, Brazil
| | - Renata G Moreira
- Instituto de Biociências, Departamento de Fisiologia da Universidade de São Paulo, Rua do Matão, trav. 14, n.321, SP 05508-090, Brazil; Centro de Biologia Marinha da Universidade de São Paulo (CEBIMar/USP), Rodovia Manoel Hipólito do Rego, km 131,5, São Sebastião, SP CEP 11600-000, Brazil
| |
Collapse
|
17
|
Yang S, Wang LL, Shi Z, Ou X, Wang W, Chen X, Liu G. Transcriptional profiling of liver tissues in chicken embryo at day 16 and 20 using RNA sequencing reveals differential antioxidant enzyme activity. PLoS One 2018; 13:e0192253. [PMID: 29408927 PMCID: PMC5800670 DOI: 10.1371/journal.pone.0192253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/18/2018] [Indexed: 12/31/2022] Open
Abstract
Considering the high proportion of polyunsaturated fatty acids, the antioxidant defense of chick embryo tissues is vital during the oxidative stress experienced at hatching. In order to better understand the mechanisms of the defense system during chicken embryo development, we detected the activity of antioxidant enzymes during the incubation of chicken embryo. Results showed that the activity of superoxide dismutase (SOD) and (GSH-PX) in livers were higher than those in hearts. Based on these results, liver tissues were used as the follow-up study materials, which were obtained from chicken embryo at day 16 and day 20. Thus, we used RNA sequencing (RNA-Seq) analysis to identify the transcriptome from 6 liver tissues. In total, we obtained 45,552,777-45,462,856 uniquely mapped reads and 18,837 mRNA transcripts, across the 6 liver samples. Among these, 1,154 differentially expressed genes (p<0.05, foldchange≥1) were identified between the high and low groups, and 1,069 GO terms were significantly enriched (p<0.05). Of these, 10 GO terms were related to active oxygen defense and antioxidant enzyme activity. GO enrichment and KEGG pathway analysis indicated that GSTA2, GSTA4, MGST1, GPX3, and HAO2 participated in glutathione metabolism, and were considered as the most promising candidate genes affecting the antioxidant enzyme activity of chicken embryo at day 16 and day 20. Using RNA-Seq and differential gene expression, our study here investigated the complexity of the liver transcriptome in chick embryos and analyzed the key genes associated with the antioxidant enzyme.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Lu Lu Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Zhaoyuan Shi
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xiaoqian Ou
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Wei Wang
- Agricultural Products Quality and Safety Supervision and Management Bureau, Xuancheng, Anhui, P. R. China
| | - Xue Chen
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Guoqing Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| |
Collapse
|
18
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|
19
|
Magnanou E, Noirot C, Falcón J, Jørgensen EH. Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish. Mar Genomics 2016; 29:45-53. [PMID: 27118202 DOI: 10.1016/j.margen.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation. Further, the extreme seasonal variations in environmental conditions (e.g. food availability) in the high North induce seasonal changes in phenotype, which require precise timing mechanisms and physiological preparations. Individual gating of life-history strategies (e.g. formation of resident and sea-migrating morphs) and transitions (e.g. maturation) depends on conditional traits (size/energy status) at specific assessment time windows, and complex neuroendocrine regulation, which so far is poorly understood. In the absence of a reference genome, and in order to facilitate the investigation of the complex biological mechanisms of this unique fish model, the present study reveals a reference transcriptome for the Arctic charr. Using Roche 454 GS FLX+, we targeted various organs being either at the crossroads of many key pathways (neuroendocrine, metabolic, behavioral), of different ontological origins or displaying complementary physiological functions. The assemblage yielded 34,690 contigs greater than 1000bp with an average length (1690bp) and annotation rate (52%) within the range, or even higher, than what has been previously obtained with other teleost de novo transcriptomes. We dramatically improve the publically available transcript data on this species that may indeed be useful for various disciplines, from basic research to applied aspects related to conservation issues and aquaculture.
Collapse
Affiliation(s)
- Elodie Magnanou
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France.
| | - Celine Noirot
- INRA, Plateforme bioinformatique Toulouse Midi-Pyrénées, UR875 Biométrie et Intelligence Artificielle, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Jack Falcón
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Even Hjalmar Jørgensen
- Faculty of Biosciences, Fisheries and Economy, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tormsø, Norway.
| |
Collapse
|
20
|
Liver Transcriptome Analysis of the Large Yellow Croaker (Larimichthys crocea) during Fasting by Using RNA-Seq. PLoS One 2016; 11:e0150240. [PMID: 26967898 PMCID: PMC4788198 DOI: 10.1371/journal.pone.0150240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
The large yellow croaker (Larimichthys crocea) is an economically important fish species in Chinese mariculture industry. To understand the molecular basis underlying the response to fasting, Illumina HiSeqTM 2000 was used to analyze the liver transcriptome of fasting large yellow croakers. A total of 54,933,550 clean reads were obtained and assembled into 110,364 contigs. Annotation to the NCBI database identified a total of 38,728 unigenes, of which 19,654 were classified into Gene Ontology and 22,683 were found in Kyoto Encyclopedia of Genes and Genomes (KEGG). Comparative analysis of the expression profiles between fasting fish and normal-feeding fish identified a total of 7,623 differentially expressed genes (P < 0.05), including 2,500 upregulated genes and 5,123 downregulated genes. Dramatic differences were observed in the genes involved in metabolic pathways such as fat digestion and absorption, citrate cycle, and glycolysis/gluconeogenesis, and the similar results were also found in the transcriptome of skeletal muscle. Further qPCR analysis confirmed that the genes encoding the factors involved in those pathways significantly changed in terms of expression levels. The results of the present study provide insights into the molecular mechanisms underlying the metabolic response of the large yellow croaker to fasting as well as identified areas that require further investigation.
Collapse
|
21
|
Qian B, Xue L. Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress. Mar Genomics 2015; 25:95-102. [PMID: 26683592 DOI: 10.1016/j.margen.2015.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
Large yellow croaker is an economically important marine fish in China. To understand the molecular mechanisms of this fish under temperature stress, liver transcriptomes of large yellow croakers undergoing heat and cold stress were investigated. The results showed that 130,246 contigs from cold stressed fish (CS), 109,203 contigs from control fish (NS) and 98,569 contigs from heat stressed fish (HS) were obtained from the liver transcriptomes with de novo analysis, respectively. And in total, 9467 (6113 up-regulated and 3364 down-regulated), 5350 (2185 up-regulated and 3165 down-regulated), 10,622 (3146 up-regulated and 7477 down-regulated) significantly differentially expressed genes were identified in CS-NS, HS-NS, and HS-CS, respectively. Pathway enrichment analysis showed that many pathways including those of energy metabolism and metabolic pathways were affected after temperature stress. Further qPCR analysis also confirmed that the expression levels of genes coding for key enzymes in metabolic pathways were dramatically changed.
Collapse
Affiliation(s)
- Baoying Qian
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China; School of Life Science, Taizhou University, Taizhou, Zhejiang 317000, PR China.
| | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
22
|
Díaz N, Piferrer F. Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genomics 2015; 16:679. [PMID: 26338702 PMCID: PMC4560065 DOI: 10.1186/s12864-015-1862-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sex in fish is plastic and in several species can be influenced by environmental factors. In sensitive species, elevated temperatures have a masculinizing effect. Previous studies on the effects of temperature on gene expression have been restricted to a few cognate genes, mostly related to testis or ovarian development, and analyzed in gonads once they had completed the process of sex differentiation. However, studies on the effect of temperature at the whole gonadal transcriptomic level are scarce in fish and, in addition, temperature effects at the time of sex differentiation at the transcriptomic level are also unknown. Here, we used the European sea bass, a gonochoristic teleost with a polygenic sex determination system influenced by temperature, and exposed larvae to elevated temperature during the period of early gonad formation. Transcriptomic analysis of the gonads was carried out about three months after the end of temperature exposure, shortly after the beginning of the process of sex differentiation. RESULTS Elevated temperature doubled the number of males with respect to untreated controls. Transcriptomic analysis of early differentiating female gonads showed how heat caused: 1) an up-regulation of genes related to cholesterol transport (star), the stress response (nr3c1) and testis differentiation (amh, dmrt, etc.), 2) a decrease in the expression of genes related to ovarian differentiation such as cyp19a1a, and 3) an increase in the expression of several genes related to epigenetic regulatory mechanisms (hdac11, dicer1, ehmt2, jarid2a, pcgf2, suz12, mettl22). CONCLUSIONS Taken together, the results of this study contribute to the understanding of how the early environment sets permanent changes that result in long-lasting consequences, in this case in the sexual phenotype. Results also show the usefulness of comparing the effects of heat on the behavior of cognate genes related to sex differentiation as well as that of genes involved in establishing and maintaining cell identity through epigenetic mechanisms.
Collapse
Affiliation(s)
- Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003, Barcelona, Spain.,Present address: Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
23
|
Shen H, Gu R, Xu G, Xu P, Nie Z, Hu Y. In-depth transcriptome analysis of Coilia ectenes, an important fish resource in the Yangtze River: de novo assembly, gene annotation. Mar Genomics 2015; 23:15-7. [PMID: 25795024 DOI: 10.1016/j.margen.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 01/26/2023]
Abstract
Coilia ectenes is an important teleost species in the Yangtze River and a model organism that can be used to study the protection of fish resources. In this report, we performed de novo transcriptome sequencing of ten cDNA libraries from the brain, gill, heart, intestine, kidney, liver, muscle, stomach, ovary, and testis tissues. A total of 352 million raw reads of 100 base pairs were generated, and 130,113 transcripts, corresponding to 65,350 non-redundant transcripts, with a mean length of 1520 bp, were assembled. BLASTx-based gene annotation (E-value<1 × 10(-5)) allowed the identification of 73,900 transcripts against at least one of four databases, including the NCBI non-redundant database, the GO database, the COG database, and the KEGG database. Our study provides a valuable resource for C. ectenes genomic and transcriptomic data that will facilitate future functional studies of C. ectenes.
Collapse
Affiliation(s)
- Huaishun Shen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruobo Gu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yacheng Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
24
|
Mareco EA, Garcia de la Serrana D, Johnston IA, Dal-Pai-Silva M. Characterization of the transcriptome of fast and slow muscle myotomal fibres in the pacu (Piaractus mesopotamicus). BMC Genomics 2015; 16:182. [PMID: 25886905 PMCID: PMC4372171 DOI: 10.1186/s12864-015-1423-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/28/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Pacu (Piaractus mesopotamicus) is a member of the Characiform family native to the Prata Basin (South America) and a target for the aquaculture industry. A limitation for the development of a selective breeding program for this species is a lack of available genetic information. The primary objectives of the present study were 1) to increase the genetic resources available for the species, 2) to exploit the anatomical separation of myotomal fibres types to compare the transcriptomes of slow and fast muscle phenotypes and 3) to systematically investigate the expression of Ubiquitin Specific Protease (USP) family members in fast and slow muscle in response to fasting and refeeding. RESULTS We generated 0.6 Tb of pair-end reads from slow and fast skeletal muscle libraries. Over 665 million reads were assembled into 504,065 contigs with an average length of 1,334 bp and N50 = 2,772 bp. We successfully annotated nearly 47% of the transcriptome and identified around 15,000 unique genes and over 8000 complete coding sequences. 319 KEGG metabolic pathways were also annotated and 380 putative microsatellites were identified. 956 and 604 genes were differentially expressed between slow and fast skeletal muscle, respectively. 442 paralogues pairs arising from the teleost-specific whole genome duplication were identified, with the majority showing different expression patterns between fibres types (301 in slow and 245 in fast skeletal muscle). 45 members of the USP family were identified in the transcriptome. Transcript levels were quantified by qPCR in a separate fasting and refeeding experiment. USP genes in fast muscle showed a similar transient increase in expression with fasting as the better characterized E3 ubiquitin ligases. CONCLUSION We have generated a 53-fold coverage transcriptome for fast and slow myotomal muscle in the pacu (Piaractus mesopotamicus) significantly increasing the genetic resources available for this important aquaculture species. We describe significant differences in gene expression between muscle fibre types for fundamental components of general metabolism, the Pi3k/Akt/mTor network and myogenesis, including detailed analysis of paralogue expression. We also provide a comprehensive description of USP family member expression between muscle fibre types and with changing nutritional status.
Collapse
Affiliation(s)
- Edson A Mareco
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil. .,School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - Maeli Dal-Pai-Silva
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil.
| |
Collapse
|
25
|
Advances in European sea bass genomics and future perspectives. Mar Genomics 2014; 18 Pt A:71-5. [PMID: 25011579 DOI: 10.1016/j.margen.2014.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022]
Abstract
Only recently available sequenced and annotated teleost fish genomes were restricted to a few model species, none of which were for aquaculture. The application of marker assisted selection for improved production traits had been largely restricted to the salmon industry and genetic and Quantitative Trait Loci (QTL) maps were available for only a few species. With the advent of next generation sequencing the landscape is rapidly changing and today the genomes of several aquaculture species have been sequenced. The European sea bass, Dicentrarchus labrax, is a good example of a commercially important aquaculture species in Europe for which in the last decade a wealth of genomic resources, including a chromosomal scale genome assembly, physical and linkage maps as well as relevant QTL have been generated. The current challenge is to stimulate the uptake of the resources by the industry so that the full potential of this scientific endeavor can be exploited and produce benefits for producers and the public alike.
Collapse
|