1
|
Wang J, Cui K, Hua G, Han D, Yang Z, Li T, Yang X, Zhang Y, Cai G, Deng X, Deng X. Skin-specific transgenic overexpression of ovine β-catenin in mice. Front Genet 2023; 13:1059913. [PMID: 36685951 PMCID: PMC9847499 DOI: 10.3389/fgene.2022.1059913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
β-catenin is a conserved molecule that plays an important role in hair follicle development. In this study, we generated skin-specific overexpression of ovine β-catenin in transgenic mice by pronuclear microinjection. Results of polymerase chain reaction (PCR) testing and Southern blot showed that the ovine β-catenin gene was successfully transferred into mice, and the exogenous β-catenin gene was passed down from the first to sixth generations. Furthermore, real-time fluorescent quantitative PCR (qRT-PCR) and western blot analysis showed that β-catenin mRNA was specifically expressed in the skin of transgenic mice. The analysis of F6 phenotypes showed that overexpression of β-catenin could increase hair follicle density by prematurely promoting the catagen-to-anagen transition. The results showed that ovine β-catenin could also promote hair follicle development in mice. We, therefore, demonstrate domestication traits in animals.
Collapse
Affiliation(s)
- Jiankui Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Kai Cui
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China,Key Laboratory of Feed Biotechnology, Ministry of Agriculture/Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoying Hua
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Deping Han
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Zu Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Tun Li
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xue Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Ganxian Cai
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiaotian Deng
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xuemei Deng
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China,*Correspondence: Xuemei Deng,
| |
Collapse
|
2
|
Ma Y, Deng X, Yang X, Wang J, Li T, Hua G, Han D, Da L, Li R, Rong W, Deng X. Characteristics of Bacterial Microbiota in Different Intestinal Segments of Aohan Fine-Wool Sheep. Front Microbiol 2022; 13:874536. [PMID: 35572716 PMCID: PMC9097873 DOI: 10.3389/fmicb.2022.874536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The microbial community performs vital functions in the intestinal system of animals. Modulation of the gut microbiota structure can indirectly or directly affect gut health and host metabolism. Aohan fine-wool sheep grow in semi-desert grasslands in China and show excellent stress tolerance. In this study, we amplified 16S rRNA gene to investigate the dynamic distribution and adaptability of the gut microbiome in the duodenum, jejunum, ileum, cecum, colon, and rectum of seven Aohan fine-wool sheep at 12 months. The results showed that the microbial composition and diversity of the ileum and the large intestine (collectively termed the hindgut) were close together, and the genetic distance and functional projections between them were similar. Meanwhile, the diversity index results revealed that the bacterial richness and diversity of the hindgut were significantly higher than those of the foregut. We found that from the foregut to the hindgut, the dominant bacteria changed from Proteobacteria to Bacteroidetes. In LEfSe analysis, Succiniclasticum was found to be significantly abundant bacteria in the foregut and was involved in succinic acid metabolism. Ruminococcaceae and Caldicoprobacteraceae were significantly abundant in hindgut, which can degrade cellulose polysaccharides in the large intestine and produce beneficial metabolites. Moreover, Coriobacteriaceae and Eggthellaceae are involved in flavonoid metabolism and polyphenol production. Interestingly, these unique bacteria have not been reported in Mongolian sheep or other sheep breeds. Collectively, the gut microbiota of Aohan fine-wool sheep is one of the keys to adapting to the semi-desert grassland environment. Our results provide new insights into the role of gut microbiota in improving stress tolerance and gut health in sheep.
Collapse
Affiliation(s)
- Yuhao Ma
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiaotian Deng
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xue Yang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Jiankui Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Tun Li
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Guoying Hua
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Deping Han
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Lai Da
- Inner Mongolia Academy of Agriculture and Animal Husbandry, Hohhot, China
| | - Rui Li
- Inner Mongolia Grassland Jinfeng Animal Husbandry Co., Ltd., Chifeng, China
| | - Weiheng Rong
- Inner Mongolia Academy of Agriculture and Animal Husbandry, Hohhot, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
- *Correspondence: Xuemei Deng,
| |
Collapse
|
3
|
Epicatechin Gallate Protects HBMVECs from Ischemia/Reperfusion Injury through Ameliorating Apoptosis and Autophagy and Promoting Neovascularization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7824684. [PMID: 30962864 PMCID: PMC6431361 DOI: 10.1155/2019/7824684] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/03/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
Green tea is one of the most beverages with antioxidants and nutrients. As one of the major components of green tea, (-)-epicatechin gallate (ECG) was evaluated for its antioxidative properties in the present study. Cell proliferation assay, tube formation, cell migration, apoptosis, and autophagy were performed in human brain microvascular endothelial cells (HBMVECs) after oxygen-glucose deprivation/reoxygenation (OGD/R) to investigate potential anti-ischemia/reperfusion injury properties of ECG in vitro. Markers of oxidative stress as ROS, LDH, MDA, and SOD were further assayed in our study. Data indicated that ECG could affect neovascularization and promote cell proliferation, tube formation, and cell migration while inhibiting apoptosis and autophagy through affecting VEGF, Bcl-2, BAX, LC3B, caspase 3, mTOR, and Beclin-1 expression. All the data suggested that ECG may be protective for the brain against ischemia/reperfusion injury by promoting neovascularization, alleviating apoptosis and autophagy, and promoting cell proliferation in HBMVECs of OGD/R.
Collapse
|
4
|
Cui K, Wang B, Ma T, Si BW, Zhang NF, Tu Y, Diao QY. Effects of dietary protein restriction followed by realimentation on growth performance and liver transcriptome alterations of lamb. Sci Rep 2018; 8:15185. [PMID: 30315204 PMCID: PMC6185953 DOI: 10.1038/s41598-018-33407-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate the compensatory effect of early protein restriction followed by a realimentation on growth performance of lamb and to explore the transcriptomic changes in liver. Thirty-two lambs with an initial birth weight of 2.3 ± 0.20 kg that were weaned on day 15 were randomly divided into two groups. The lambs were fed a basal diet with normal protein level (NPL, protein level in the milk replacer and starter, 25 and 21%, respectively) or low protein level (LPL, protein level in the milk replacer and starter, 19 and 15%, respectively) from 15 to 60 d, after which all lambs consumed the same diet with a normal protein level from 61 to 90 d. Protein restriction led to a significant decrease in average daily gain (ADG), body weight and liver weight (P < 0.05). Transcriptome analysis showed that 302 or 12 differentially expressed genes (DEGs) were identified during the restriction or recovery periods, respectively (P < 0.05). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that DEGs enriched in nutrient metabolism and antioxidant capacity were down-regulated, while vessel development and immunity response-related genes up-regulated. The genes involved in metabolism of tyrosine were still down-regulated in the realimentation phase. Studies in this area indicated the accelerated growth effect of early protein restriction followed by a realimentation on growth performance of lambs and explored the transcriptomics change of liver which can help to develop feeding strategies to optimize the use of feedstuffs and in providing a new perspective for the study of early nutrition and epigenetics in later life.
Collapse
Affiliation(s)
- K Cui
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - B Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - T Ma
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - B W Si
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - N F Zhang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - Y Tu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China
| | - Q Y Diao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing, China.
| |
Collapse
|
5
|
Wu F, Wu L, Wu Q, Zhou L, Li W, Wang D. Duplication and gene expression patterns of β-catenin in Nile tilapia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:651-659. [PMID: 29290067 DOI: 10.1007/s10695-017-0460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
β-Catenin, a key transcriptional coactivator of the Wnt pathway, plays an important role in animal embryonic development and organogenesis. In our earlier study, we have reported that two types of β-catenin (β-catenin-1 and β-catenin-2) were ubiquitously expressed in almost all the tissues examined in tilapia. However, the immunolocalization of β-catenin in those tissues, especially in extra-gonadal tissues, remains unclear. In the present study, we further confirm that these two types of β-catenin gene exist only in teleosts and are derived from 3R (third round of genome duplication) by phylogenetic and syntenic analyses. Moreover, the transcriptome analysis conducted in this investigation reveals that two β-catenins exhibited similar expression patterns in seven adult tissues and four key developmental stages of XX and XY gonads. Finally, immunohistochemistry analysis was performed to detect the cell localization of β-catenin. A positive signal of β-catenin was observed in various tissues of tilapia, such as the intestine, liver, kidney, spleen, eye, brain, and gonads. The results of our study indicate that tilapia β-catenin might be involved in the organ development and play some specific functions in biological processes; all these data will provide basic reference for understanding the molecular mechanism of β-catenin in regulating of teleost organogenesis.
Collapse
Affiliation(s)
- Fengrui Wu
- Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, Anhui Province, 236000, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China.
| | - Limin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Qingqing Wu
- Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, Anhui Province, 236000, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Wenyong Li
- Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, Anhui Province, 236000, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
6
|
Mu F, Rong E, Jing Y, Yang H, Ma G, Yan X, Wang Z, Li Y, Li H, Wang N. Structural Characterization and Association of Ovine Dickkopf-1 Gene with Wool Production and Quality Traits in Chinese Merino. Genes (Basel) 2017; 8:E400. [PMID: 29261127 PMCID: PMC5748718 DOI: 10.3390/genes8120400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
Dickkopf-1 (DKK1) is an inhibitor of canonical Wnt signaling pathway and regulates hair follicle morphogenesis and cycling. To investigate the potential involvement of DKK1 in wool production and quality traits, we characterized the genomic structure of ovine DKK1, performed polymorphism detection and association analysis of ovine DKK1 with wool production and quality traits in Chinese Merino. Our results showed that ovine DKK1 consists of four exons and three introns, which encodes a protein of 262 amino acids. The coding sequence of ovine DKK1 and its deduced amino acid sequence were highly conserved in mammals. Eleven single nucleotide polymorphisms (SNPs) were identified within the ovine DKK1 genomic region. Gene-wide association analysis showed that SNP5 was significantly associated with mean fiber diameter (MFD) in the B (selected for long wool fiber and high-quality wool), PW (selected for high reproductive capacity, high clean wool yield and high-quality wool) and U (selected for long wool fiber with good uniformity, high wool yield and lower fiber diameter) strains (p < 4.55 × 10-3 = 0.05/11). Single Nucleotide Polymorphisms wide association analysis showed that SNP8 was significantly associated with MFD in A strain and fleece weight in A (selected for large body size), PM (selected for large body size, high reproductive capacity and high meat yield) and SF (selected for mean fiber diameter less than 18 μm and wool fiber length between 5 and 9 cm) strains (p < 0.05), SNP9 was significantly associated with curvature in B and U strains (p < 0.05) and SNP10 was significantly associated with coefficient of variation of fiber diameter in A, PW and PM strains and standard deviation of fiber diameter in A and PM strains (p < 0.05). The haplotypes derived from these 11 identified SNPs were significantly associated with MFD (p < 0.05). In conclusion, our results suggest that DKK1 may be a major gene controlling wool production and quality traits, also the identified SNPs (SNPs5, 8, 9 and 10) might be used as potential molecular markers for improving sheep wool production and quality in sheep breeding.
Collapse
Affiliation(s)
- Fang Mu
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Enguang Rong
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Yang Jing
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| | - Guangwei Ma
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Zhipeng Wang
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
7
|
Molecular cloning, characterization and tissue specificity of the expression of the ovine CSRP2 and CSRP3 genes from Small-tail Han sheep (Ovis aries). Gene 2016; 580:47-57. [DOI: 10.1016/j.gene.2016.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022]
|