1
|
Jin J, Ma J, Wang X, Hong F, Zhang Y, Zhou F, Wan C, Zou Y, Yang J, Lu S, Tong X. Multi-omics PGT: re-evaluation of euploid blastocysts for implantation potential based on RNA sequencing. Hum Reprod 2024; 39:2861-2872. [PMID: 39413437 PMCID: PMC11629973 DOI: 10.1093/humrep/deae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/29/2024] [Indexed: 10/18/2024] Open
Abstract
STUDY QUESTION In addition to chromosomal euploidy, can the transcriptome of blastocysts be used as a novel predictor of embryo implantation potential? SUMMARY ANSWER This retrospective analysis showed that based on differentially expressed genes (DEGs) between euploid blastocysts which resulted and did not result in a clinical pregnancy, machine learning models could help improve implantation rates by blastocyst optimization. WHAT IS KNOWN ALREADY Embryo implantation is a multifaceted process, with implantation loss and pregnancy failure related not only to blastocyst euploidy but also to the intricate dialog between blastocyst and endometrium. Although in vitro studies have revealed the characteristics of trophectoderm (TE) differentiation in implanted blastocysts and the function of TE placentation at the implantation site, the precise molecular mechanisms of embryo implantation and their clinical application remain to be fully elucidated. STUDY DESIGN, SIZE, DURATION This study involved 102 patients who underwent 111 cycles for preimplantation genetic testing for aneuploidies (PGT-A) between March 2022 and July 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS The study included 412 blastocysts biopsied at Day 5 [D5] or Day 6 [D6] for patients who underwent PGT-A. The biopsy lysates were split and subjected to DNA and RNA sequencing (DNA- and RNA-seq). One part was used for PGT-A to detect DNA copy number variations, whereas the other part was assessed simultaneously by RNA-seq to determine the transcriptome characteristics. To validate the reliability and accuracy of RNA-seq obtained from this strategy, we initially analyzed the transcriptome of blastocysts with chromosomal aneuploidies. Subsequently, we compared the transcriptomic features of blastocysts with different rates of formation (D5 vs D6) and investigated the network of interactions between key blastulation genes and the receptive endometrium. Then to evaluate the implantation potential of euploid blastocysts, we identified DEGs between euploid blastocysts that resulted in clinical pregnancy (defined as the presence of a gestational sac detected by ultrasound after 5 weeks) and those that did not. These DEGs were then employed to construct a predictive model for optimizing blastocyst selection. MAIN RESULTS AND THE ROLE OF CHANCE The successful detection rate of PGT-A was remarkably high at 99.8%. The RNA data may infer aneuploidy for both trisomy and monosomy. Between the euploid blastocysts that formed on D5 and D6, 187 DEGs were predominantly involved in cell differentiation for embryonic placenta development, the PPAR signaling pathway, and the Notch signaling pathway. These D5/D6 DEGs also exhibited a functional dialog with the receptive phase endometrium-specific genes through protein-protein interaction networks, indicating that the embryo undergoes further differentiation for post-implantation development. Furthermore, a modeling strategy using 280 DEGs between blastocysts leading to successful clinical pregnancies or failing to produce clinical pregnancies was implemented to refine the euploid embryo optimization, achieving areas under the curves of 0.88, 0.71, and 0.84 for the random forest (RF), support vector machine, and linear discriminant analysis models, respectively. Finally, a retrospective analysis of 83 transferred euploid blastocysts using the RF model identified three types of euploid embryos with a decreasing trend in implantation potential. Notably, the implantation rate of the good group was significantly higher than that of the moderate group (88.6% vs 50.0% P = 0.001) and that of the moderate group was higher than that of the poor group (50.0% vs 20.8%, P = 0.035). LIMITATIONS, REASONS FOR CAUTION The sample size was insufficient; thus, a prospective study is needed to verify the clinical effectiveness of the above model. Because we did not analyze blastocysts that led only to biochemical pregnancies but failed clinical pregnancies separately, our classification system still must be modified to screen these embryos. WIDER IMPLICATIONS OF THE FINDINGS Transcriptomic analysis of blastocysts offers a novel approach for predicting embryo implantation potential, which can be utilized to optimize clinical embryo selection. The ranking system may be effective in reducing the times and costs involved in achieving a clinical pregnancy. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (No. 2023C03034), the National Natural Science Foundation of China (82101709), and the National Key Research and Development Program for Young Scientists of China (No. 2022YFC2702300). The authors state no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jieliang Ma
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Xiufen Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Fang Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - YinLi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Cheng Wan
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Yangyun Zou
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Ji Yang
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Sijia Lu
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
2
|
Martin A, Mercader A, Dominguez F, Quiñonero A, Perez M, Gonzalez-Martin R, Delgado A, Mifsud A, Pellicer A, De Los Santos MJ. Mosaic results after preimplantation genetic testing for aneuploidy may be accompanied by changes in global gene expression. Front Mol Biosci 2023; 10:1180689. [PMID: 37122560 PMCID: PMC10140421 DOI: 10.3389/fmolb.2023.1180689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Aneuploidy in preimplantation embryos is a major cause of human reproductive failure. Unlike uniformly aneuploid embryos, embryos diagnosed as diploid-aneuploid mosaics after preimplantation genetic testing for aneuploidy (PGT-A) can develop into healthy infants. However, the reason why these embryos achieve full reproductive competence needs further research. Current RNA sequencing techniques allow for the investigation of the human preimplantation transcriptome, providing new insights into the molecular mechanisms of embryo development. In this prospective study, using euploid embryo gene expression as a control, we compared the transcriptome profiles of inner cell mass and trophectoderm samples from blastocysts with different levels of chromosomal mosaicism. A total of 25 samples were analyzed from 14 blastocysts with previous PGT-A diagnosis, including five low-level mosaic embryos and four high-level mosaic embryos. Global gene expression profiles visualized in cluster heatmaps were correlated with the original PGT-A diagnosis. In addition, gene expression distance based on the number of differentially expressed genes increased with the mosaic level, compared to euploid controls. Pathways involving apoptosis, mitosis, protein degradation, metabolism, and mitochondrial energy production were among the most deregulated within mosaic embryos. Retrospective analysis of the duration of blastomere cell cycles in mosaic embryos revealed several mitotic delays compared to euploid controls, providing additional evidence of the mosaic status. Overall, these findings suggest that embryos with mosaic results are not simply a misdiagnosis by-product, but may also have a genuine molecular identity that is compatible with their reproductive potential.
Collapse
Affiliation(s)
- A. Martin
- IVI-RMA Foundation, Health Research Institute La Fe, Valencia, Spain
| | - A. Mercader
- IVI-RMA Foundation, Health Research Institute La Fe, Valencia, Spain
- IVI-RMA Valencia, Valencia, Spain
| | - F. Dominguez
- IVI-RMA Foundation, Health Research Institute La Fe, Valencia, Spain
| | - A. Quiñonero
- IVI-RMA Foundation, Health Research Institute La Fe, Valencia, Spain
| | - M. Perez
- IVI-RMA Foundation, Health Research Institute La Fe, Valencia, Spain
| | | | | | | | - A. Pellicer
- IVI-RMA Foundation, Health Research Institute La Fe, Valencia, Spain
- IVI-RMA Rome, Rome, Italy
| | - M. J. De Los Santos
- IVI-RMA Foundation, Health Research Institute La Fe, Valencia, Spain
- IVI-RMA Valencia, Valencia, Spain
- *Correspondence: M. J. De Los Santos,
| |
Collapse
|
3
|
Kai Y, Mei H, Kawano H, Nakajima N, Takai A, Kumon M, Inoue A, Yamashita N. Transcriptomic signatures in trophectoderm and inner cell mass of human blastocysts classified according to developmental potential, maternal age and morphology. PLoS One 2022; 17:e0278663. [PMID: 36455208 PMCID: PMC9715016 DOI: 10.1371/journal.pone.0278663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Selection of high-quality embryos is important to achieve successful pregnancy in assisted reproductive technology (ART). Recently, it has been debated whether RNA-sequencing (RNA-Seq) should be applied to ART to predict embryo quality. However, information on genes that can serve as markers for pregnant expectancy is limited. Furthermore, there is no information on which transcriptome of trophectoderm (TE) or inner cell mass (ICM) is more highly correlated with pregnant expectancy. Here, we performed RNA-Seq analysis of TE and ICM of human blastocysts, the pregnancy expectation of which was retrospectively determined using the clinical outcomes of 1,890 cases of frozen-thawed blastocyst transfer. We identified genes that were correlated with the expected pregnancy rate in ICM and TE, respectively, with a larger number of genes identified in TE than in ICM. Downregulated genes in the TE of blastocysts that were estimated to have lower expectation of pregnancy included tight junction-related genes such as CXADR and ATP1B1, which have been implicated in peri-implantation development. Moreover, we identified dozens of differentially expressed genes by regrouping the blastocysts based on the maternal age and the Gardner score. Additionally, we showed that aneuploidy estimation using RNA-Seq datasets does not correlate with pregnancy expectation. Thus, our study provides an expanded list of candidate genes for the prediction of pregnancy in human blastocyst embryos.
Collapse
Affiliation(s)
- Yoshiteru Kai
- Reproductive Medicine Research Center, Yamashita Shonan Yume Clinic, Fujisawa, Japan
- * E-mail: (YK); (AI)
| | - Hailiang Mei
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroomi Kawano
- Reproductive Medicine Research Center, Yamashita Shonan Yume Clinic, Fujisawa, Japan
| | - Naotsuna Nakajima
- Reproductive Medicine Research Center, Yamashita Shonan Yume Clinic, Fujisawa, Japan
| | - Aya Takai
- Reproductive Medicine Research Center, Yamashita Shonan Yume Clinic, Fujisawa, Japan
| | - Mami Kumon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Azusa Inoue
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Tokyo Metropolitan University, Hachioji, Japan
- * E-mail: (YK); (AI)
| | - Naoki Yamashita
- Reproductive Medicine Research Center, Yamashita Shonan Yume Clinic, Fujisawa, Japan
| |
Collapse
|
4
|
Wang X, Wang L, Shi L, Zhang P, Li Y, Li M, Tian J, Wang L, Zhao F. GWAS of Reproductive Traits in Large White Pigs on Chip and Imputed Whole-Genome Sequencing Data. Int J Mol Sci 2022; 23:13338. [PMID: 36362120 PMCID: PMC9656588 DOI: 10.3390/ijms232113338] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/09/2023] Open
Abstract
Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are economically important traits in pig production, and disentangling the molecular mechanisms associated with traits can provide valuable insights into their genetic structure. Genotype imputation can be used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP) chips based on sequence data, thereby dramatically improving the power of genome-wide association studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individuals sequenced by whole-genome resequencing. To avoid population stratification, we identified genetic variants associated with reproductive traits by performing within-population GWAS and cross-population meta-analyses with data before and after imputation. Finally, several genes were detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2, KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1, TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high imputation accuracy will contribute to the identification of causal mutations in pig breeding.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pengfei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mianyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Lal A, Kranyak A, Blalock J, Athavale D, Barré A, Doran A, Chang TA, Robinson RD, Zimmerman S, Wininger JD, Fowler LA, Roudebush WE, Chosed RJ. Apoptotic qPCR gene expression array analysis demonstrates proof-of-concept for rapid blastocoel fluid-conditioned media molecular prediction. J Assist Reprod Genet 2022; 39:1515-1522. [PMID: 35543804 DOI: 10.1007/s10815-022-02510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Successful identification of transcriptomic biomarkers within human IVF embryos may enhance implantation prediction and provide insights not available through conventional embryo biopsy genomic analysis. We demonstrate proof-of-concept for a methodology to assess overall embryo gene expression using qPCR with blastocoel fluid-conditioned media by examining the comparative presence of apoptotic genes. METHODS Blastocoel fluid-conditioned media were collected from 19 embryos (11 euploid) following trophectoderm biopsy of day-5 ICSI-IVF blastocysts. Media were assessed for apoptotic gene expression via qPCR. Statistical analysis of gene expression was conducted via Wilcoxon Signed-Ranks test (overall expression), multivariate ANOVA (functional gene groups), and chi-square test of independence (gene level). RESULTS A significantly higher overall apoptotic gene expression within euploid versus aneuploid embryos (p = 0.001) was observed. There was significantly (p = 0.045) higher expression of pro-apoptotic genes between implanted and not implanted embryos. Pro- vs. anti-apoptotic gene expression from all euploid embryos approached significance (p = 0.053). The ploidy status-based claim is further substantiated at the gene level with significantly higher expression of BBC3 (p = 0.012) and BCL2L13 (p = 0.003) in euploid embryos compared to aneuploid embryos. CONCLUSIONS In this preliminary study, we demonstrate that (1) qualitative analysis of blastocoel fluid-conditioned media gene expression is possible, (2) global trends of expression are potentially related to clinical outcomes, and (3) gene-level expression trends exist and may be another viable metric for comparative expression between samples. The presence of statistical significance within analyses conducted with this sample size warrants a larger investigation of blastocoel fluid-conditioned media as an additional beneficial predictive tool for future IVF cases.
Collapse
Affiliation(s)
- Arnav Lal
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA.,School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allison Kranyak
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA
| | - Jonathan Blalock
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA
| | - Deepti Athavale
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA
| | - Alyssa Barré
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA
| | - Addison Doran
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA
| | - T Arthur Chang
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Randal D Robinson
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | | | - J David Wininger
- Department of Obstetrics and Gynecology-Reproductive Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Lauren A Fowler
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA
| | - William E Roudebush
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA
| | - Renee J Chosed
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Road, Greenville, SC, 29605, USA.
| |
Collapse
|
6
|
Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update 2020; 26:264-301. [PMID: 32096829 DOI: 10.1093/humupd/dmz042] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryo implantation is a complex process that requires the coordination of a series of events, involving both the embryo and the maternal endometrium. Key to this process is the intricate cascade of molecular mechanisms regulated by endocrine, paracrine and autocrine modulators of embryonic and maternal origin. Despite significant progress in ART, implantation failure still affects numerous infertile couples worldwide and fewer than 10% of embryos successfully implant. Improved selection of both the viable embryos and the optimal endometrial phenotype for transfer remains crucial to enhancing implantation chances. However, both classical morphological embryo selection and new strategies incorporated into clinical practice, such as embryonic genetic analysis, morphokinetics or ultrasound endometrial dating, remain insufficient to predict successful implantation. Additionally, no techniques are widely applied to analyse molecular signals involved in the embryo-uterine interaction. More reliable biological markers to predict embryo and uterine reproductive competence are needed to improve pregnancy outcomes. Recent years have seen a trend towards 'omics' methods, which enable the assessment of complete endometrial and embryonic molecular profiles during implantation. Omics have advanced our knowledge of the implantation process, identifying potential but rarely implemented biomarkers of successful implantation. OBJECTIVE AND RATIONALE Differences between the findings of published omics studies, and perhaps because embryonic and endometrial molecular signatures were often not investigated jointly, have prevented firm conclusions being reached. A timely review summarizing omics studies on the molecular determinants of human implantation in both the embryo and the endometrium will help facilitate integrative and reliable omics approaches to enhance ART outcomes. SEARCH METHODS In order to provide a comprehensive review of the literature published up to September 2019, Medline databases were searched using keywords pertaining to omics, including 'transcriptome', 'proteome', 'secretome', 'metabolome' and 'expression profiles', combined with terms related to implantation, such as 'endometrial receptivity', 'embryo viability' and 'embryo implantation'. No language restrictions were imposed. References from articles were also used for additional literature. OUTCOMES Here we provide a complete summary of the major achievements in human implantation research supplied by omics approaches, highlighting their potential to improve reproductive outcomes while fully elucidating the implantation mechanism. The review highlights the existence of discrepancies among the postulated biomarkers from studies on embryo viability or endometrial receptivity, even using the same omic analysis. WIDER IMPLICATIONS Despite the huge amount of biomarker information provided by omics, we still do not have enough evidence to link data from all omics with an implantation outcome. However, in the foreseeable future, application of minimally or non-invasive omics tools, together with a more integrative interpretation of uniformly collected data, will help to overcome the difficulties for clinical implementation of omics tools. Omics assays of the embryo and endometrium are being proposed or already being used as diagnostic tools for personalised single-embryo transfer in the most favourable endometrial environment, avoiding the risk of multiple pregnancies and ensuring better pregnancy rates.
Collapse
Affiliation(s)
- Purificación Hernández-Vargas
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Manuel Muñoz
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Francisco Domínguez
- Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| |
Collapse
|
7
|
Tocci A. The unknown human trophectoderm: implication for biopsy at the blastocyst stage. J Assist Reprod Genet 2020; 37:2699-2711. [PMID: 32892265 DOI: 10.1007/s10815-020-01925-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] Open
Abstract
Trophectoderm biopsy is increasingly performed for pre-implantation genetic testing of aneuploidies and considered a safe procedure on short-term clinical outcome, without strong assessment of long-term consequences. Poor biological information on human trophectoderm is available due to ethical restrictions. Therefore, most studies have been conducted in vitro (choriocarcinoma cell lines, embryonic and pluripotent stem cells) and on murine models that nevertheless poorly reflect the human counterpart. Polarization, compaction, and blastomere differentiation (e.g., the basis to ascertain trophectoderm origin) are poorly known in humans. In addition, the trophectoderm function is poorly known from a biological point of view, although a panoply of questionable and controversial microarray studies suggest that important genes overexpressed in trophectoderm are involved in pluripotency, metabolism, cell cycle, endocrine function, and implantation. The intercellular communication system between the trophectoderm cells and the inner cell mass, modulated by cell junctions and filopodia in the murine model, is obscure in humans. For the purpose of this paper, data mainly on primary cells from human and murine embryos has been reviewed. This review suggests that the trophectoderm origin and functions have been insufficiently ascertained in humans so far. Therefore, trophectoderm biopsy should be considered an experimental procedure to be undertaken only under approved rigorous experimental protocols in academic contexts.
Collapse
Affiliation(s)
- Angelo Tocci
- Reproductive Medicine Unit, Gruppo Donnamed, Via Giuseppe Silla 12, Rome, Italy.
| |
Collapse
|
8
|
Massimiani M, Lacconi V, La Civita F, Ticconi C, Rago R, Campagnolo L. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. Int J Mol Sci 2019; 21:E23. [PMID: 31861484 PMCID: PMC6981505 DOI: 10.3390/ijms21010023] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Implantation of the embryo into the uterine endometrium is one of the most finely-regulated processes that leads to the establishment of a successful pregnancy. A plethora of factors are released in a time-specific fashion to synchronize the differentiation program of both the embryo and the endometrium. Indeed, blastocyst implantation in the uterus occurs in a limited time frame called the "window of implantation" (WOI), during which the maternal endometrium undergoes dramatic changes, collectively called "decidualization". Decidualization is guided not just by maternal factors (e.g., estrogen, progesterone, thyroid hormone), but also by molecules secreted by the embryo, such as chorionic gonadotropin (CG) and interleukin-1β (IL-1 β), just to cite few. Once reached the uterine cavity, the embryo orients correctly toward the uterine epithelium, interacts with specialized structures, called pinopodes, and begins the process of adhesion and invasion. All these events are guided by factors secreted by both the endometrium and the embryo, such as leukemia inhibitory factor (LIF), integrins and their ligands, adhesion molecules, Notch family members, and metalloproteinases and their inhibitors. The aim of this review is to give an overview of the factors and mechanisms regulating implantation, with a focus on those involved in the complex crosstalk between the blastocyst and the endometrium.
Collapse
Affiliation(s)
- Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Fabio La Civita
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy;
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| |
Collapse
|
9
|
Evans J, Rai A, Nguyen HPT, Poh QH, Elglass K, Simpson RJ, Salamonsen LA, Greening DW. Human Endometrial Extracellular Vesicles Functionally Prepare Human Trophectoderm Model for Implantation: Understanding Bidirectional Maternal-Embryo Communication. Proteomics 2019; 19:e1800423. [PMID: 31531940 DOI: 10.1002/pmic.201800423] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial-embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, a trophectoderm spheroid-based in vitro model mimicking the pre-implantation human embryo is used to recapitulate important functional aspects of blastocyst implantation. Functionally, human endometrial EVs, derived from hormonally treated cells synchronous with implantation, are readily internalized by trophectoderm cells, regulating adhesive and invasive capacity of human trophectoderm spheroids. To gain molecular insights into mechanisms underpinning endometrial EV-mediated enhancement of implantation, quantitative proteomics reveal critical alterations in trophectoderm cellular adhesion networks (cell adhesion molecule binding, cell-cell adhesion mediator activity, and cell adherens junctions) and metabolic and gene expression networks, and the soluble secretome from human trophectodermal spheroids. Importantly, transfer of endometrial EV cargo proteins to trophectoderm to mediate changes in trophectoderm function is demonstrated. This is highlighted by correlation among endometrial EVs, the trophectodermal proteome following EV uptake, and EV-mediated trophectodermal cellular proteome, important for implantation. This work provides an understanding into molecular mechanisms of endometrial EV-mediated regulation of human trophectoderm functions-fundamental in understanding human endometrium-embryo signaling during implantation.
Collapse
Affiliation(s)
- Jemma Evans
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Hong P T Nguyen
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia
| | - Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Kirstin Elglass
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lois A Salamonsen
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia.,Departments of Physiology and Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3800, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| |
Collapse
|
10
|
Zhu S, Kuek V, Bennett S, Xu H, Rosen V, Xu J. Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease. Cell Mol Life Sci 2019; 76:3515-3523. [PMID: 31089746 PMCID: PMC6697716 DOI: 10.1007/s00018-019-03137-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Cytokine-like protein 1 (Cytl1), also named Protein C17 or C4orf4 is located on human chromosome 4p15-p16 and encodes a polypeptide of 126 amino acid residues that displays characteristics of a secretory protein. Cytl1 is expressed by a sub-population of CD34+ human mononuclear cells from bone marrow and cord blood, and by chondrocytes (cartilage-forming cells). In this review, we explore evidence suggesting that Cytl1 may be involved in the regulation of chondrogenesis, cartilage homeostasis and osteoarthritis progression, accompanied by the modulation of Sox9 and insulin-like growth factor 1 expression. In addition, Cytl1 exhibits chemotactic and pro-angiogenic biological effects. Interestingly, CCR2 (C-C chemokine receptor type 2) has been identified as a likely receptor for Cytl1, which mediates the ERK signalling pathway. Cytl1 also appears to mediate the TGF-beta-Smad signalling pathway, which is hypothetically independent of the CCR2 receptor. More recently, studies have also potentially linked Cytl1 with a variety of conditions including cardiac fibrosis, smoking, alcohol dependence risk, and tumours such as benign prostatic hypertrophy, lung squamous cell carcinoma, neuroblastoma and familial colorectal cancer. Defining the molecular structure of Cytl1 and its role in disease pathogenesis will help us to design therapeutic approaches for Cytl1-associated pathological conditions.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Vincent Kuek
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Samuel Bennett
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Vicki Rosen
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Molecular Laboratory, Division of Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
11
|
Ntostis P, Kokkali G, Iles D, Huntriss J, Tzetis M, Picton H, Pantos K, Miller D. Can trophectoderm RNA analysis predict human blastocyst competency? Syst Biol Reprod Med 2019; 65:312-325. [PMID: 31244343 PMCID: PMC6816490 DOI: 10.1080/19396368.2019.1625085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 01/25/2023]
Abstract
A systematic review of the literature showed that trophectoderm biopsy could assist in the selection of healthy embryos for uterine transfer without affecting implantation rates. However, previous studies attempting to establish the relationship between trophectoderm gene expression profiles and implantation competency using either microarrays or RNA sequencing strategies, were not sufficiently optimized to handle the exceptionally low RNA inputs available from biopsied material. In this pilot study, we report that differential gene expression in human trophectoderm biopsies assayed by an ultra-sensitive next generation RNA sequencing strategy could predict blastocyst implantation competence. RNA expression profiles from isolated human trophectoderm cells were analysed with established clinical pregnancy being the primary endpoint. Following RNA sequencing, a total of 47 transcripts were found to be significantly differentially expressed between the trophectoderm cells from successfully implanted (competent) versus unsuccessful (incompetent) blastocysts. Of these, 36 transcripts were significantly down-regulated in the incompetent blastocysts, including Hydroxysteroid 17-Beta Dehydrogenase 1 (HSD17B1) and Cytochrome P450 Family 11 Subfamily A Member 1 (CYP11A1), while the remaining 11 transcripts were significantly up-regulated, including BCL2 Antagonist/Killer 1 (BAK1) and KH Domain Containing 1 Pseudogene 1 (KHDC1P1) of which the latter was always detected in the incompetent and absent in all competent blastocysts. Ontological analysis of differentially expressed RNAs revealed pathways involved in steroidogenic processes with high confidence. Novel differentially expressed transcripts were also noted by reference to a de novo sequence assembly. The selection of the blastocyst with the best potential to support full-term pregnancy following single embryo transfer could reduce the need for multiple treatment cycles and embryo transfers. The main limitation was the low sample size (N = 8). Despite this shortcoming, the pilot suggests that trophectoderm biopsy could assist with the selection of healthy embryos for embryo transfer. A larger cohort of samples is needed to confirm these findings. Abbreviations: AMA: advanced maternal age; ART: assisted reproductive technology; CP: clinical pregnancy; DE: differential expression; FDR: false discovery rate; IVF: in vitro fertilization; LD PCR: long distance PCR; qRT-PCR: quantitative real-time PCR; SET: single embryo transfer; TE: trophectoderm.
Collapse
Affiliation(s)
- Panagiotis Ntostis
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Kokkali
- Genesis Athens hospital, Reproductive medicine Unit, Athens, Greece
| | - David Iles
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| | - John Huntriss
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Picton
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| | | | - David Miller
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Aberkane A, Essahib W, Spits C, De Paepe C, Sermon K, Adriaenssens T, Mackens S, Tournaye H, Brosens JJ, Van de Velde H. Expression of adhesion and extracellular matrix genes in human blastocysts upon attachment in a 2D co-culture system. Mol Hum Reprod 2019; 24:375-387. [PMID: 29846687 DOI: 10.1093/molehr/gay024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION What are the changes in human embryos, in terms of morphology and gene expression, upon attachment to endometrial epithelial cells? SUMMARY ANSWER Apposition and adhesion of human blastocysts to endometrial epithelial cells are predominantly initiated at the embryonic pole and these steps are associated with changes in expression of adhesion and extracellular matrix (ECM) genes in the embryo. WHAT IS KNOWN ALREADY Both human and murine embryos have been co-cultured with Ishikawa cells, although embryonic gene expression associated with attachment has not yet been investigated in an in vitro implantation model. STUDY DESIGN, SIZE, DURATION Vitrified human blastocysts were warmed and co-cultured for up to 48 h with Ishikawa cells, a model cell line for receptive endometrial epithelium. PARTICIPANTS/MATERIALS, SETTING, METHODS Six days post-fertilization (6dpf) human embryos were co-cultured with Ishikawa cells for 12, 24 (7dpf) or 48 h (8dpf) and attachment rate and morphological development investigated. Expression of 84 adhesion and ECM genes was analysed by quantitative PCR. Immunofluorescence microscopy was used to assess the expression of three informative genes at the protein level. Data are reported on 145 human embryos. Mann-Whitney U was used for statistical analysis between two groups, with P < 0.05 considered significant. MAIN RESULTS AND THE ROLE OF CHANCE The majority of embryos attached to Ishikawa cells at the level of the polar trophectoderm; 41% of co-cultured embryos were loosely attached after 12 h and 86% firmly attached after 24 h. Outgrowth of hCG-positive embryonic cells at 8dpf indicated differentiation of trophectoderm into invasive syncytiotrophoblast. Gene expression analysis was performed on loosely attached and unattached embryos co-cultured with Ishikawa cells for 12 h. In contrast to unattached embryos, loosely attached embryos expressed THBS1, TNC, COL12A1, CTNND2, ITGA3, ITGAV and LAMA3 and had significantly higher CD44 and TIMP1 transcript levels (P = 0.014 and P = 0.029, respectively). LAMA3, THBS1 and TNC expressions were validated at the protein level in firmly attached 7dpf embryos. Thrombospondin 1 (THBS1) resided in the cytoplasm of embryonic cells whereas laminin subunit alpha 3 (LAMA3) and tenascin C (TNC) were expressed on the cell surface of trophectoderm cells. Incubation with a neutralizing TNC antibody did not affect the rate of embryo attachment or hCG secretion. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION This in vitro study made use of an endometrial adenocarcinoma cell line to mimic receptive luminal epithelium. Also, the number of embryos was limited. Contamination of recovered embryos with Ishikawa cells was unlikely based on their differential gene expression profiles. WIDER IMPLICATIONS OF THE FINDINGS Taken together, we provide a 'proof of concept' that initiation of the implantation process coincides with the induction of specific embryonic genes. Genome-wide expression profiling of a larger sample set may provide insights into the molecular embryonic pathways underlying successful or failed implantation. STUDY FUNDING AND COMPETING INTEREST(S) A.A. was supported by a grant from the 'Instituut voor Innovatie door Wetenschap en Technologie' (IWT, 121716, Flanders, Belgium). This work was supported by the 'Wetenschappelijk Fonds Willy Gepts' (WFWG G142 and G170, Universitair Ziekenhuis Brussel). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- A Aberkane
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - W Essahib
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - C De Paepe
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - T Adriaenssens
- Research Group Follicle Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Mackens
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| | - H Tournaye
- Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - H Van de Velde
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| |
Collapse
|
13
|
Compromised global embryonic transcriptome associated with advanced maternal age. J Assist Reprod Genet 2019; 36:915-924. [PMID: 31025158 PMCID: PMC6541584 DOI: 10.1007/s10815-019-01438-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate the global transcriptome and associated embryonic molecular networks impacted with advanced maternal age (AMA). Methods Blastocysts derived from donor oocyte IVF cycles with no male factor infertility (< 30 years of age) and AMA blastocysts (≥ 42 years) with no other significant female factor infertility or male factor infertility were collected with informed patient consent. RNA sequencing libraries were prepared using the SMARTer® Ultra® Low Kit (Clontech Laboratories) and sequenced on the Illumina HiSEQ 4000. Bioinformatics included Ingenuity® Pathway Analysis (Qiagen) with ViiA™ 7 qPCR utilized for gene expression validation (Applied Biosystems). Results A total of 2688 significant differentially expressed transcripts were identified to distinguish the AMA blastocysts from young, donor controls. 2551 (95%) of these displayed decreased transcription in the blastocysts from older women. Pathway analysis revealed three altered molecular signaling networks known to be critical for embryo and fetal development: CREBBP, ESR1, and SP1. Validation of genes within these networks confirmed the global decreased transcription observed in AMA blastocysts (P < 0.05). Conclusions A significant, overall decreased global transcriptome was observed in blastocysts from AMA women. The ESR1/SP1/CREBBP pathway, in particular, was found to be a highly significant upstream regulator impacting biological processes that are vital during embryonic patterning and pre-implantation development. These results provide evidence that AMA embryos are compromised on a cell signaling level which can repress the embryo’s ability to proliferate and implant, contributing to a deterioration of reproductive outcomes. Electronic supplementary material The online version of this article (10.1007/s10815-019-01438-5) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Sanchez-Ribas I, Diaz-Gimeno P, Sebastián-León P, Mercader A, Quiñonero A, Ballesteros A, Pellicer A, Domínguez F. Transcriptomic behavior of genes associated with chromosome 21 aneuploidies in early embryo development. Fertil Steril 2019; 111:991-1001.e2. [PMID: 30922649 DOI: 10.1016/j.fertnstert.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To analyze how chromosome 21 (HSA21) ploidy affects global gene expression of early human blastocysts. DESIGN Prospective study. SETTING University-affiliated in vitro fertilization clinic. PATIENT(S) A total of 26 high-quality donated embryos from in vitro fertilization (IVF) patients: trisomy 21 (n = 8), monosomy 21 (n = 10), and euploid (n = 8) blastocysts. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Blastocyst transcriptome changes and its associated functions. RESULT(S) Trisomy 21, monosomy 21, and euploid blastocysts were classified by comparative genomic hybridization. The global transcriptome of whole blastocysts was analyzed with small cell number RNA sequencing, and they were compared to understand the gene expression behavior at early development and its implications for embryo implantation. We identified 1,232 differentially expressed genes (false discovery rate <0.05) in monosomy 21 compared with euploid blastocysts associated with dysregulated functions in embryo development as the Rap1 signaling pathway. Curiously, Down syndrome in early development revealed fewer transcriptomic changes than expected. In addition, Down syndrome gene expression in neonates, children, and adults revealed that the number of deregulated genes increases across life stages from blastocysts to adults, suggesting a potential dosage-compensation mechanism for human chromosome 21. CONCLUSION(S) At the transcriptomic level, early development in Down syndrome is mainly dosage compensated. However, monosomy 21 is strongly transcriptionally affected because early development involving main functions is associated with embryo implantation.
Collapse
Affiliation(s)
- Imma Sanchez-Ribas
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; IVI-RMA Barcelona, Barcelona, Spain
| | - Patricia Diaz-Gimeno
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain.
| | - Patricia Sebastián-León
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain
| | - Amparo Mercader
- Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain; IVI-RMA Valencia, Valencia, Spain
| | | | | | - Antonio Pellicer
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Domínguez
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain
| |
Collapse
|
15
|
Fuchs Weizman N, Wyse BA, Antes R, Ibarrientos Z, Sangaralingam M, Motamedi G, Kuznyetsov V, Madjunkova S, Librach CL. Towards Improving Embryo Prioritization: Parallel Next Generation Sequencing of DNA and RNA from a Single Trophectoderm Biopsy. Sci Rep 2019; 9:2853. [PMID: 30814554 PMCID: PMC6393576 DOI: 10.1038/s41598-019-39111-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
Abstract
Improved embryo prioritization is crucial in optimizing the results in assisted reproduction, especially in light of increasing utilization of elective single embryo transfers. Embryo prioritization is currently based on morphological criteria and in some cases incorporates preimplantation genetic testing for aneuploidy (PGT-A). Recent technological advances have enabled parallel genomic and transcriptomic assessment of a single cell. Adding transcriptomic analysis to PGT-A holds promise for better understanding early embryonic development and implantation, and for enhancing available embryo prioritization tools. Our aim was to develop a platform for parallel genomic and transcriptomic sequencing of a single trophectoderm (TE) biopsy, that could later be correlated with clinical outcomes. Twenty-five embryos donated for research were utilized; eight for initial development and optimization of our method, and seventeen to demonstrate clinical safety and reproducibility of this method. Our method achieved 100% concordance for ploidy status with that achieved by the classic PGT-A. All sequencing data exceeded quality control metrics. Transcriptomic sequencing data was sufficient for performing differential expression (DE) analysis. All biopsies expressed specific TE markers, further validating the accuracy of our method. Using PCA, samples clustered in euploid and aneuploid aggregates, highlighting the importance of controlling for ploidy in every transcriptomic assessment.
Collapse
Affiliation(s)
| | | | - Ran Antes
- CReATe Fertility Centre, Toronto, Canada
| | | | | | | | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Gynecology, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
16
|
Kawai K, Harada T, Ishikawa T, Sugiyama R, Kawamura T, Yoshida A, Tsutsumi O, Ishino F, Kubota T, Kohda T. Parental age and gene expression profiles in individual human blastocysts. Sci Rep 2018; 8:2380. [PMID: 29402920 PMCID: PMC5799158 DOI: 10.1038/s41598-018-20614-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
The epigenetic status of the genome changes dynamically from fertilization to implantation. In addition, the physiological environment during the process of gametogenesis, including parental age, may affect the epigenome of the embryo after fertilization. It is important to clarify the influence of parental age on gene expression in the embryo in terms of transgenerational epigenetics to improve the techniques currently used in assisted reproductive medicine. Here, we performed single-embryo RNA-seq analysis on human blastocysts fertilized by intracytoplasmic sperm injection, including from relatively elderly mothers, to elucidate the effects of parental age on the embryonic gene expression profile. We identified a number of genes in which the expression levels were decreased with increasing maternal age. Among these genes, several are considered to be important for meiotic chromosomal segregation, such as PTTG1, AURKC, SMC1B and MEIKIN. Furthermore, the expression levels of certain genes critical for autophagy and embryonic growth, specifically GABARAPL1 and GABARAPL3, were negatively correlated with advanced paternal age. In addition, levels of transcripts derived from major satellite repeats also decreased as the maternal age increased. These results suggest that epigenetic modifications of the oocyte genome may change with parental age and be transmitted to the next generation.
Collapse
Affiliation(s)
- Kiyotaka Kawai
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,AMED (Japan Agency for Medical Research and Development), Tokyo, Japan.,Department of Reproductive Medicine, Kameda Medical Center, Chiba, Japan
| | - Tatsuya Harada
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Reproductive Medicine, Kameda IVF Clinic Makuhari, Chiba, Japan
| | - Tomonori Ishikawa
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,AMED (Japan Agency for Medical Research and Development), Tokyo, Japan
| | | | | | | | - Osamu Tsutsumi
- Sanno Hospital, Center for Human Reproduction and Gynecologic Endoscopy, Tokyo, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiro Kubota
- AMED (Japan Agency for Medical Research and Development), Tokyo, Japan.,Tokyo Kyosai Hospital, Tokyo, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,AMED (Japan Agency for Medical Research and Development), Tokyo, Japan.
| |
Collapse
|
17
|
Bevilacqua C, Ducos B. Laser microdissection: A powerful tool for genomics at cell level. Mol Aspects Med 2017; 59:5-27. [PMID: 28927943 DOI: 10.1016/j.mam.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Laser microdissection (LM) has become widely democratized over the last fifteen years. Instruments have evolved to offer more powerful and efficient lasers as well as new options for sample collection and preparation. Technological evolutions have also focused on the post-microdissection analysis capabilities, opening up investigations in all disciplines of experimental and clinical biology, thanks to the advent of new high-throughput methods of genome analysis, including RNAseq and proteomics, now globally known as microgenomics, i.e. analysis of biomolecules at the cell level. In spite of the advances these rapidly developing methods have allowed, the workflow for sampling and collection by LM remains a critical step in insuring sample integrity in terms of histology (accurate cell identification) and biochemistry (reliable analyzes of biomolecules). In this review, we describe the sample processing as well as the strengths and limiting factors of LM applied to the specific selection of one or more cells of interest from a heterogeneous tissue. We will see how the latest developments in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyzes of tiny amounts of biomolecules extracted from few cells isolated from a complex tissue, in their physiological context, thus offering new opportunities for understanding fundamental physiological and/or patho-physiological processes.
Collapse
Affiliation(s)
- Claudia Bevilacqua
- GABI, Plateforme @BRIDGE, INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy en Josas, France.
| | - Bertrand Ducos
- LPS-ENS, CNRS UMR 8550, UPMC, Université Denis Diderot, PSL Research University, 24 Rue Lhomond, 75005 Paris France; High Throughput qPCR Core Facility, IBENS, 46 Rue d'Ulm, 75005 Paris France; Laser Microdissection Facility of Montagne Sainte Geneviève, CIRB Collège de France, Place Marcellin Berthelot, 75005 Paris France.
| |
Collapse
|
18
|
Kroneis T, Jonasson E, Andersson D, Dolatabadi S, Ståhlberg A. Global preamplification simplifies targeted mRNA quantification. Sci Rep 2017; 7:45219. [PMID: 28332609 PMCID: PMC5362892 DOI: 10.1038/srep45219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 01/09/2023] Open
Abstract
The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification.
Collapse
Affiliation(s)
- Thomas Kroneis
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden.,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Emma Jonasson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Daniel Andersson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| |
Collapse
|
19
|
Freour T, Vassena R. Transcriptomics analysis and human preimplantation development. J Proteomics 2016; 162:135-140. [PMID: 27765633 DOI: 10.1016/j.jprot.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
Abstract
The study of oocyte and preimplantation embryo biology has been regarded with great curiosity throughout scientific history, but it is not until the development of robust methods for in vitro observation and manipulation of animal gametes that developmental biology has flourished as a discipline. By far the biggest technical challenge in studying transcription in oocytes and early embryo has been the necessity of developing techniques that retain a high level of accuracy when starting from small amount of material. The objective of this narrative review is to summarize the knowledge gained about the embryonic preimplantation period in the human species from transcriptomics experiments, and to discuss technical limitations and solutions to the study of transcriptomics in these samples. SIGNIFICANCE In this review we identify key critical issues in performing transcriptomics experiments during the human preimplantation period, and identifying possible ways to overcome them. This, combined with a description of clinical perspectives and the definition of future avenues for research will provide useful for future research.
Collapse
Affiliation(s)
- Thomas Freour
- Clinica EUGIN, Barcelona, Spain; Service de médecine et biologie de la reproduction, CHU de Nantes, Nantes, France; Faculté de médecine, Université de Nantes, Nantes, France; INSERM UMR1064, Nantes, France
| | | |
Collapse
|
20
|
Celá A, Mádr A, Dědová T, Pelcová M, Ješeta M, Žáková J, Crha I, Glatz Z. MEKC-LIF method for analysis of amino acids after on-capillary derivatization by transverse diffusion of laminar flow profiles mixing of reactants for assessing developmental capacity of human embryos after in vitro fertilization. Electrophoresis 2016; 37:2305-12. [DOI: 10.1002/elps.201500587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Andrea Celá
- Department of Biochemistry, Faculty of Science; Masaryk University; Kamenice Brno Czech Republic
| | - Aleš Mádr
- Department of Biochemistry, Faculty of Science; Masaryk University; Kamenice Brno Czech Republic
| | - Tereza Dědová
- Department of Biochemistry, Faculty of Science; Masaryk University; Kamenice Brno Czech Republic
| | - Marta Pelcová
- Department of Biochemistry, Faculty of Science; Masaryk University; Kamenice Brno Czech Republic
| | - Michal Ješeta
- Department of Obstetrics and Gynecology; Faculty of Medicine and University Hospital Brno; Obilní trh Brno Czech Republic
| | - Jana Žáková
- Department of Obstetrics and Gynecology; Faculty of Medicine and University Hospital Brno; Obilní trh Brno Czech Republic
| | - Igor Crha
- Department of Obstetrics and Gynecology; Faculty of Medicine and University Hospital Brno; Obilní trh Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science; Masaryk University; Kamenice Brno Czech Republic
| |
Collapse
|