1
|
Jarva TM, Phillips NM, Von Eiff C, Poulakis GR, Naylor G, Feldheim KA, Flynt AS. Gene expression, evolution, and the genetics of electrosensing in the smalltooth sawfish, Pristis pectinata. Ecol Evol 2024; 14:e11260. [PMID: 38694751 PMCID: PMC11057056 DOI: 10.1002/ece3.11260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Sawfishes (Pristidae) are large, highly threatened rays named for their tooth-studded rostrum, which is used for prey sensing and capture. Of all five species, the smalltooth sawfish, Pristis pectinata, has experienced the greatest decline in range, currently found in only ~20% of its historic range. To better understand the genetic underpinnings of these taxonomically and morphologically unique animals, we collected transcriptomic data from several tissue types, mapped them to the recently completed reference genome, and contrasted the patterns observed with comparable data from other elasmobranchs. Evidence of positive selection was detected in 79 genes in P. pectinata, several of which are involved in growth factor/receptor tyrosine kinase signaling and body symmetry and may be related to the unique morphology of sawfishes. Changes in these genes may impact cellular responses to environmental conditions such as temperature, dissolved oxygen, and salinity. Data acquired also allow for examination of the molecular components of P. pectinata electrosensory systems, which are highly developed in sawfishes and have likely been influential in their evolutionary success.
Collapse
Affiliation(s)
- Taiya M. Jarva
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Nicole M. Phillips
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Cory Von Eiff
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Gregg R. Poulakis
- Charlotte Harbor Field LaboratoryFish and Wildlife Research Institute, Florida Fish and Wildlife Conservation CommissionPort CharlotteFloridaUSA
| | - Gavin Naylor
- Florida Program for Shark ResearchUniversity of FloridaGainesvilleFloridaUSA
| | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution, the Field MuseumChicagoIllinoisUSA
| | - Alex S. Flynt
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| |
Collapse
|
2
|
Chen AL, Wu TH, Shi L, Clusin WT, Kao PN. Calcium-Activated Big-Conductance (BK) Potassium Channels Traffic through Nuclear Envelopes into Kinocilia in Ray Electrosensory Cells. Cells 2023; 12:2125. [PMID: 37681857 PMCID: PMC10486799 DOI: 10.3390/cells12172125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Electroreception through ampullae of Lorenzini in the little skate, Leucoraja erinacea, involves functional coupling between voltage-activated calcium channels (CaV1.3, cacna1d) and calcium-activated big-conductance potassium (BK) channels (BK, kcnma1). Whole-mount confocal microscopy was used to characterize the pleiotropic expression of BK and CaV1.3 in intact ampullae. BK and CaV1.3 are co-expressed in electrosensory cell plasma membranes, nuclear envelopes and kinocilia. Nuclear localization sequences (NLS) were predicted in BK and CaV1.3 by bioinformatic sequence analyses. The BK NLS is bipartite, occurs at an alternative splice site for the mammalian STREX exon and contains sequence targets for post-translational phosphorylation. Nuclear localization of skate BK channels was characterized in heterologously transfected HEK293 cells. Double-point mutations in the bipartite NLS (KR to AA or SVLS to AVLA) independently attenuated BK channel nuclear localization. These findings support the concept that BK partitioning between the electrosensory cell plasma membrane, nucleus and kinocilium may be regulated through a newly identified bipartite NLS.
Collapse
Affiliation(s)
- Abby L. Chen
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| | - Ting-Hsuan Wu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingfang Shi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| | - William T. Clusin
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Peter N. Kao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| |
Collapse
|
3
|
Clusin WT, Wu TH, Shi LF, Kao PN. Further studies of ion channels in the electroreceptor of the skate through deep sequencing, cloning and cross species comparisons. Gene 2019; 718:143989. [PMID: 31326551 DOI: 10.1016/j.gene.2019.143989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/23/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022]
Abstract
Our comparative studies seek to understand the structure and function of ion channels in cartilaginous fish that can detect very low voltage gradients in seawater. The principal channels of the electroreceptor include a calcium activated K channel whose α subunit is Kcnma1, and a voltage-dependent calcium channel, Cacna1d. It has also been suggested based on physiological and pharmacological evidence that a voltage-gated K channel is present in the basal membranes of the receptor cells which modulates synaptic transmitter release. Large conductance calcium-activated K channels (BK) are comprised of four α subunits, encoded by Kcnma1 and modulatory β subunits of the Kcnmb class. We recently cloned and published the skate Kcnma1 gene and most of Kcnmb4 using purified mRNA of homogenized electroreceptors. Bellono et al. have recently performed RNA sequencing (RNA-seq) on purified mRNA from skate electroreceptors and found several ion channels including Kcnma1. We searched the Bellono et al. RNA-seq repository for additional channels and subunits. Our most significant findings are the presence of two Shaker type voltage dependent K channel sequences which are grouped together as isoforms in the data repository. The larger of these is a skate ortholog of the voltage dependent fast potassium channel Kv1.1, which is expressed at appreciable levels. The second ortholog is similar to Kv1.5 but has fewer N-terminal amino acids than other species. The sequence for Kv1.5 in the skate is very strongly aligned with the recently reported sequence for potassium channels in the electroreceptors of the cat shark, S. retifer, which also modulate synaptic transmission. The latter channel was designated as Kv1.3 in the initial report, but we suggest that these channels are actually orthologs of each other, and that Kv1.5 is the prevailing designation. We also found a beta subunit sequence (Kcnab2) which may co-assemble with one or both of the voltage gated channels. The new channels and subunits were verified by RT-PCR and the Kv1.1 sequence was confirmed by cloning. We also searched the RNA-seq repository for accessory subunits of Kcnma1, and found a computer-generated assembly that contained a complete sequence of its β subunit, Kcnmb2. Skate Kcnmb2 has a total of 279 amino acids, with 51 novel amino acids at the N-terminus which may play a specific physiological role. This sequence was confirmed by PCR and cloning. However, skate Kcnmb2 is expressed at low levels in the electroreceptor compared to Kcnma1 and skate Kcnmb1 is absent. The evolutionary origin of the newly described K channels and their subunits was studied by alignments with mammalian sequences, including human, and also those in related fish: the whale shark (R. typus), the ghost shark (C.milii), and (S. retifer). There are also orthologous K channels of the lamprey, which has electroreceptors. Tree building and bootstrap programs were used to confirm phylogenetic inferences. Further research should focus on the subcellular locations of these channels, their gating behavior, and the effects of accessory subunits on gating.
Collapse
Affiliation(s)
- William T Clusin
- Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States of America.
| | - Ting-Hsuan Wu
- Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States of America
| | - Ling-Fang Shi
- Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States of America
| | - Peter N Kao
- Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States of America
| |
Collapse
|
4
|
Bellono NW, Leitch DB, Julius D. Molecular tuning of electroreception in sharks and skates. Nature 2018; 558:122-126. [PMID: 29849147 PMCID: PMC6101975 DOI: 10.1038/s41586-018-0160-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022]
Abstract
Ancient cartilaginous vertebrates, such as sharks, skates, and rays, possess specialized electrosensory organs that detect weak electric fields and relay this information to the central nervous system1–4. Sharks exploit this sensory modality for predation, whereas skates may also use it to detect signals from conspecifics5. Here we analyze shark and skate electrosensory cells to ask if discrete physiological properties could contribute to behaviorally-relevant sensory tuning. We show that sharks and skates use a similar low threshold voltage-gated calcium channel to initiate cellular activity but employ distinct potassium channels to modulate this activity. Electrosensory cells from sharks express specially adapted voltage-gated potassium channels that support large, repetitive membrane voltage spikes capable of driving near-maximal vesicular release from elaborate ribbon synapses. In contrast, skates use a calcium-activated potassium channel to produce small, tunable membrane voltage oscillations that elicit stimulus-dependent vesicular release. We propose that these sensory adaptations support amplified indiscriminate signal detection in sharks versus selective frequency detection in skates, potentially reflecting the electroreceptive requirements of these elasmobranch species. Our findings demonstrate how sensory systems adapt to suit an animal’s lifestyle or environmental niche through discrete molecular and biophysical modifications.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA. .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Cannady R, Rinker JA, Nimitvilai S, Woodward JJ, Mulholland PJ. Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior. Handb Exp Pharmacol 2018; 248:311-343. [PMID: 29374839 DOI: 10.1007/164_2017_90] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of KCa2 and KV7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.
Collapse
Affiliation(s)
- Reginald Cannady
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer A Rinker
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Sudarat Nimitvilai
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
6
|
Abstract
Only a handful of vertebrates are capable of sensing weak electric fields. Two new studies shed light on the development and physiology of electroreceptive organs.
Collapse
Affiliation(s)
- Eva L Kozak
- Sensory Biology & Organogenesis, Helmholtz Zentrum München, Munich, Germany
| | - Hernán López-Schier
- Sensory Biology & Organogenesis, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
7
|
Modrell MS, Lyne M, Carr AR, Zakon HH, Buckley D, Campbell AS, Davis MC, Micklem G, Baker CV. Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife 2017; 6. [PMID: 28346141 PMCID: PMC5429088 DOI: 10.7554/elife.24197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.
Collapse
Affiliation(s)
- Melinda S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mike Lyne
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adrian R Carr
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Harold H Zakon
- Department of Neuroscience, The University of Texas at Austin, Austin, United States.,Department of Integrative Biology, The University of Texas at Austin, Austin, United States
| | - David Buckley
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales-MNCN-CSIC, Madrid, Spain.,Department of Natural Sciences, Saint Louis University - Madrid Campus, Madrid, Spain
| | - Alexander S Campbell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marcus C Davis
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, United States
| | - Gos Micklem
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Clare Vh Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Bellono NW, Leitch DB, Julius D. Molecular basis of ancestral vertebrate electroreception. Nature 2017; 543:391-396. [PMID: 28264196 PMCID: PMC5354974 DOI: 10.1038/nature21401] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
Abstract
Elasmobranch fishes, including sharks, rays, and skates, use specialized electrosensory organs called ampullae of Lorenzini to detect extremely small changes in environmental electric fields. Electrosensory cells within these ampullae can discriminate and respond to minute changes in environmental voltage gradients through an unknown mechanism. Here we show that the voltage-gated calcium channel CaV1.3 and the big conductance calcium-activated potassium (BK) channel are preferentially expressed by electrosensory cells in little skate (Leucoraja erinacea) and functionally couple to mediate electrosensory cell membrane voltage oscillations, which are important for the detection of specific, weak electrical signals. Both channels exhibit unique properties compared with their mammalian orthologues that support electrosensory functions: structural adaptations in CaV1.3 mediate a low-voltage threshold for activation, and alterations in BK support specifically tuned voltage oscillations. These findings reveal a molecular basis of electroreception and demonstrate how discrete evolutionary changes in ion channel structure facilitate sensory adaptation.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, California 94143, USA
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, California 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, California 94143, USA
| |
Collapse
|