1
|
Thomaidou AC, Goulielmaki M, Tsintarakis A, Zoumpourlis P, Toya M, Christodoulou I, Zoumpourlis V. miRNA-Guided Regulation of Mesenchymal Stem Cells Derived from the Umbilical Cord: Paving the Way for Stem-Cell Based Regeneration and Therapy. Int J Mol Sci 2023; 24:ijms24119189. [PMID: 37298143 DOI: 10.3390/ijms24119189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The human body is an abundant source of multipotent cells primed with unique properties that can be exploited in a multitude of applications and interventions. Mesenchymal stem cells (MSCs) represent a heterogenous population of undifferentiated cells programmed to self-renew and, depending on their origin, differentiate into distinct lineages. Alongside their proven ability to transmigrate toward inflammation sites, the secretion of various factors that participate in tissue regeneration and their immunoregulatory function render MSCs attractive candidates for use in the cytotherapy of a wide spectrum of diseases and conditions, as well as in different aspects of regenerative medicine. In particular, MSCs that can be found in fetal, perinatal, or neonatal tissues possess additional capabilities, including predominant proliferation potential, increased responsiveness to environmental stimuli, and hypoimmunogenicity. Since microRNA (miRNA)-guided gene regulation governs multiple cellular functions, miRNAs are increasingly being studied in the context of driving the differentiation process of MSCs. In the present review, we explore the mechanisms of miRNA-directed differentiation of MSCs, with a special focus on umbilical cord-derived mesenchymal stem cells (UCMSCs), and we identify the most relevant miRNAs and miRNA sets and signatures. Overall, we discuss the potent exploitations of miRNA-driven multi-lineage differentiation and regulation of UCMSCs in regenerative and therapeutic protocols against a range of diseases and/or injuries that will achieve a meaningful clinical impact through maximizing treatment success rates, while lacking severe adverse events.
Collapse
Affiliation(s)
- Arsinoe C Thomaidou
- Laboratory of Clinical Virology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Marialena Toya
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
2
|
Sang L, Guo X, Shi J, Hou S, Fan H, Lv Q. Characteristics and Developments in Mesenchymal Stem Cell Therapy for COVID-19: An Update. Stem Cells Int 2021; 2021:5593584. [PMID: 34211556 PMCID: PMC8205583 DOI: 10.1155/2021/5593584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has so far resulted in over a hundred million people being infected. COVID-19 poses a threat to human health around the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been confirmed as the pathogenic virus of COVID-19. SARS-CoV-2 belongs to the β-coronavirus family of viruses and is mainly transmitted through the respiratory tract. It has been proven that SARS-CoV-2 mainly targets angiotensin-converting enzyme II (ACE2) receptors on the surface of various cells in humans. The main clinical symptoms of COVID-19 include fever, cough, and severe acute respiratory distress syndrome (ARDS). Current evidence suggests that the damage caused by the virus may be closely related to the induction of cytokine storms in COVID-19. No specific drugs or measures have yet to be shown to cure COVID-19 completely. Cell-based approaches, primarily mesenchymal stem cells (MSCs), have been identified to have anti-inflammatory and immune functions in COVID-19. Clinical studies about using MSCs and its derivatives-exosomes for COVID-19 treatment-are under investigation. Here, we review the current progress of the biological characteristics, clinical manifestations, and cell-based treatment development for COVID-19. Providing up-to-date information on COVID-19 and potential MSC therapies will help highlight routes to prevent and treat the disease.
Collapse
Affiliation(s)
- Lu Sang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
3
|
Jamshidi E, Babajani A, Soltani P, Niknejad H. Proposed Mechanisms of Targeting COVID-19 by Delivering Mesenchymal Stem Cells and Their Exosomes to Damaged Organs. Stem Cell Rev Rep 2021; 17:176-192. [PMID: 33432484 PMCID: PMC7799400 DOI: 10.1007/s12015-020-10109-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
With the outbreak of coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world has been facing an unprecedented challenge. Considering the lack of appropriate therapy for COVID-19, it is crucial to develop effective treatments instead of supportive approaches. Mesenchymal stem cells (MSCs) as multipotent stromal cells have been shown to possess treating potency through inhibiting or modulating the pathological events in COVID-19. MSCs and their exosomes participate in immunomodulation by controlling cell-mediated immunity and cytokine release. Furthermore, they repair the renin-angiotensin-aldosterone system (RAAS) malfunction, increase alveolar fluid clearance, and reduce the chance of hypercoagulation. Besides the lung, which is the primary target of SARS-CoV-2, the heart, kidney, nervous system, and gastrointestinal tract are also affected by COVID-19. Thus, the efficacy of targeting these organs via different delivery routes of MSCs and their exosomes should be evaluated to ensure safe and effective MSCs administration in COVID-19. This review focuses on the proposed therapeutic mechanisms and delivery routes of MSCs and their exosomes to the damaged organs. It also discusses the possible application of primed and genetically modified MSCs as a promising drug delivery system in COVID-19. Moreover, the recent advances in the clinical trials of MSCs and MSCs-derived exosomes as one of the promising therapeutic approaches in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wang Y, Li H, Li X, Su X, Xiao H, Yang J. Hypoxic Preconditioning of Human Umbilical Cord Mesenchymal Stem Cells Is an Effective Strategy for Treating Acute Lung Injury. Stem Cells Dev 2021; 30:128-134. [PMID: 33349130 DOI: 10.1089/scd.2020.0174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe clinical respiratory failure disorder associated with chronic pathology and disability and has a mortality rate of 40%-60%. However, the pathogenesis of ARDS/ALI remains unclear, and existing therapeutic options are insufficient for addressing the severity of the disease. Mesenchymal stem cells (MSCs) play an important role in the prevention and treatment of ALI, especially acute alveolar epithelial injury. However, the low survival rate of transplanted MSCs reduces their effectiveness. When human umbilical cord MSCs (hUC-MSCs) are transplanted directly, only a minority of cells migrate toward damaged tissues. Moreover, their maintenance time is short, leading to unsatisfactory therapeutic results. A moderate hypoxic environment can promote the proliferation of MSCs, inhibit apoptosis, and facilitate migration and chemotaxis. In summary, hypoxic culturing before transplantation improves the effectiveness of hUC-MSCs in treating ARDS/ALI and promises to provide novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xue Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Su
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Han Y, Mu SC, Wang JL, Wei W, Zhu M, Du SL, Min M, Xu YJ, Song ZJ, Tong CY. MicroRNA-145 plays a role in mitochondrial dysfunction in alveolar epithelial cells in lipopolysaccharide-induced acute respiratory distress syndrome. World J Emerg Med 2021; 12:54-60. [PMID: 33505551 DOI: 10.5847/wjem.j.1920-8642.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) causes substantial mortalities. Alveolar epithelium is one of the main sites of cell injuries in ARDS. As an important kind of microRNAs (miRNAs), microRNA-145 (miR-145) has been studied in various diseases, while its role in ARDS has not been investigated. METHODS Lipopolysaccharide (LPS) was intratracheally instilled to establish a rat ARDS model. Cytokines from bronchoalveolar lavage fluid (BALF) were measured using rat tumor necrosis factor-α and interleukin-6 enzyme-linked immunosorbent assay kits (R&D Systems), and the pathological structures were evaluated using hematoxylin and eosin (H&E) staining and transmission electron microscope; the lung miR-145 messenger RNA (mRNA) was detected using quantitative polymerase chain reaction. Bioinformatics focused on the target genes and possible pathways of gene regulation. RESULTS A rat model of LPS-induced ARDS was successfully established. The miR-145 was down-regulated in the LPS-induced ARDS lung, and mitochondrial dysfunction was observed in alveolar epithelial cells, most obviously at 72 hours after LPS. TargetScan and miRDB databases were used to predict the target genes of miR-145. A total of 428 overlapping genes were identified, seven genes were associated with mitochondrial function, and Ogt, Camk2d, Slc8a3, and Slc25a25 were verified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, and Gene Ontology (GO) biological process was mainly enriched in signal transduction and transcription regulation. CONCLUSIONS The miR-145 is down-regulated in LPS-induced ARDS, and affects its downstream genes targeting mitochondrial functions.
Collapse
Affiliation(s)
- Yi Han
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Su-Cheng Mu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Li Wang
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Wei
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Zhu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi-Lin Du
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Min Min
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun-Jie Xu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhen-Ju Song
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao-Yang Tong
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, Wang S, Song J. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther 2020; 11:519. [PMID: 33261658 PMCID: PMC7705855 DOI: 10.1186/s13287-020-02011-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (HUC-MSCs) present in the umbilical cord tissue are self-renewing and multipotent. They can renew themselves continuously and, under certain conditions, differentiate into one or more cell types constituting human tissues and organs. HUC-MSCs differentiate, among others, into osteoblasts, chondrocytes, and adipocytes and have the ability to secrete cytokines. The possibility of noninvasive harvesting and low immunogenicity of HUC-MSCs give them a unique advantage in clinical applications. In recent years, HUC-MSCs have been widely used in clinical practice, and some progress has been made in their use for therapeutic purposes. Main body This article describes two aspects of the clinical therapeutic effects of HUC-MSCs. On the one hand, it explains the benefits and mechanisms of HUC-MSC treatment in various diseases. On the other hand, it summarizes the results of basic research on HUC-MSCs related to clinical applications. The first part of this review highlights several functions of HUC-MSCs that are critical for their therapeutic properties: differentiation into terminal cells, immune regulation, paracrine effects, anti-inflammatory effects, anti-fibrotic effects, and regulating non-coding RNA. These characteristics of HUC-MSCs are discussed in the context of diabetes and its complications, liver disease, systemic lupus erythematosus, arthritis, brain injury and cerebrovascular diseases, heart diseases, spinal cord injury, respiratory diseases, viral infections, and other diseases. The second part emphasizes the need to establish an HUC-MSC cell bank, discusses tumorigenicity of HUC-MSCs and the characteristics of different in vitro generations of these cells in the treatment of diseases, and provides technical and theoretical support for the clinical applications of HUC-MSCs. Conclusion HUC-MSCs can treat a variety of diseases clinically and have achieved good therapeutic effects, and the development of HUC-MSC assistive technology has laid the foundation for its clinical application.
Collapse
Affiliation(s)
- Qixin Xie
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Rui Liu
- Department of Medical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jia Jiang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Jing Peng
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Chunyan Yang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Wen Zhang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Sheng Wang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Jing Song
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China.
| |
Collapse
|
7
|
Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell 2020; 11:707-722. [PMID: 32519302 PMCID: PMC7282699 DOI: 10.1007/s13238-020-00738-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Collapse
Affiliation(s)
- Hua Qin
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| | - Andong Zhao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
8
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
9
|
Mesenchymal Stem Cell-Based Therapy of Inflammatory Lung Diseases: Current Understanding and Future Perspectives. Stem Cells Int 2019; 2019:4236973. [PMID: 31191672 PMCID: PMC6525794 DOI: 10.1155/2019/4236973] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
During acute or chronic lung injury, inappropriate immune response and/or aberrant repair process causes irreversible damage in lung tissue and most usually results in the development of fibrosis followed by decline in lung function. Inhaled corticosteroids and other anti-inflammatory drugs are very effective in patients with inflammatory lung disorders, but their long-term use is associated with severe side effects. Accordingly, new therapeutic agents that will attenuate ongoing inflammation and, at the same time, promote regeneration of injured alveolar epithelial cells are urgently needed. Mesenchymal stem cells (MSCs) are able to modulate proliferation, activation, and effector function of all immune cells that play an important role in the pathogenesis of acute and chronic inflammatory lung diseases. In addition to the suppression of lung-infiltrated immune cells, MSCs have potential to differentiate into alveolar epithelial cells in vitro and, accordingly, represent new players in cell-based therapy of inflammatory lung disorders. In this review article, we described molecular mechanisms involved in MSC-based therapy of acute and chronic pulmonary diseases and emphasized current knowledge and future perspectives related to the therapeutic application of MSCs in patients suffering from acute respiratory distress syndrome, pneumonia, asthma, chronic obstructive pulmonary diseases, and idiopathic pulmonary fibrosis.
Collapse
|
10
|
Abstract
Mesenchymal Stem Cells (MSCs) are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency to differentiate into mesodermal cell lineages. The use of MSCs in clinical settings began with high enthusiasm and the number of MSC-based clinical trials has been rising ever since. However; the very unique characteristics of MSCs that made them suitable to for therapeutic use, might give rise to unwanted outcomes, including tumor formation and progression. In this paper, we present a model of carcinogenesis initiated by MSCs, which chains together the tissue organization field theory, the stem cell theory, and the inflammation-cancer chain. We believe that some tissue resident stem cells could be leaked cells from bone marrow MSC pool to various injured tissue, which consequently transform and integrate in the host tissue. If the injury persists or chronic inflammation develops, as a consequence of recurring exposure to growth factors, cytokines, etc. the newly formed tissue from MSCs, which still has conserved their mesenchymal and stemness features, go through rapid population expansion, and nullify their tumor suppressor genes, and hence give rise to neoplastic cell (carcinomas, sarcomas, and carcino-sarcomas). Considering the probability of this hypothesis being true, the clinical and therapeutic use of MSCs should be with caution, and the recipients' long term follow-up seems to be insightful.
Collapse
Affiliation(s)
- Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, PO.Box: 71345-1798, Shiraz, Iran.
| | - Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, PO.Box: 71345-1798, Shiraz, Iran
| |
Collapse
|
11
|
Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater 2018; 7:e1800525. [PMID: 30073803 DOI: 10.1002/adhm.201800525] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Cancer remains one of the major health problems all over the world and conventional therapeutic approaches have failed to attain an effective cure. Tumor microenvironments (TME) present a unique challenge in tumor therapy due to their complex structures and multiple components, which also serve as the soil for tumor growth, development, invasion, and migration. The complex TME includes immune cells, fibrous collagen structures, and tortuous blood vessels, in which conventional therapeutic approaches are rendered useless. State-of-the-art nanotechnologies have potential to cope with the threats of malignant tumors. With unique physiochemical properties, carbon nanomaterials (CNMs), including graphene, fullerenes, carbon nanotubes, and carbon quantum dots, offer opportunities to resolve the hurdles, by targeting not only cancer cells but also the TME. This review summarizes the progress about CNM-based cancer therapy strategies, which mainly focuses on both the treatment for cancer cells and TME-targeted modulation. In the last, the challenges for TME-based therapy via CNMs are discussed, which will be important in guiding current basic research to clinical translation in the future.
Collapse
Affiliation(s)
- Jabran Saleem
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chunying Chen
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| |
Collapse
|
12
|
Al-Rubaie A, Wise AF, Sozo F, De Matteo R, Samuel CS, Harding R, Ricardo SD. The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Respir Res 2018; 19:114. [PMID: 29884181 PMCID: PMC5994120 DOI: 10.1186/s12931-018-0816-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/21/2018] [Indexed: 02/03/2023] Open
Abstract
Background Exposure to high levels of oxygen (hyperoxia) after birth leads to lung injury. Our aims were to investigate the modulation of myeloid cell sub-populations and the reduction of fibrosis in the lungs following administration of human mesenchymal stem cells (hMSC) to neonatal mice exposed to hyperoxia. Method Newborn mice were exposed to 90% O2 (hyperoxia) or 21% O2 (normoxia) from postnatal days 0–4. A sub-group of hyperoxia mice were injected intratracheally with 2.5X105 hMSCs. Using flow cytometry we assessed pulmonary immune cells at postnatal days 0, 4, 7 and 14. The following markers were chosen to identify these cells: CD45+ (leukocytes), Ly6C+Ly6G+ (granulocytes), CD11b+CD11c+ (macrophages); macrophage polarisation was assessed by F4/80 and CD206 expression. hMSCs expressing enhanced green fluorescent protein (eGFP) and firefly luciferase (fluc) were administered via the trachea at day 4. Lung macrophages in all groups were profiled using next generation sequencing (NGS) to assess alterations in macrophage phenotype. Pulmonary collagen deposition and morphometry were assessed at days 14 and 56 respectively. Results At day 4, hyperoxia increased the number of pulmonary Ly6C+Ly6G+ granulocytes and F4/80lowCD206low macrophages but decreased F4/80highCD206high macrophages. At days 7 and 14, hyperoxia increased numbers of CD45+ leukocytes, CD11b+CD11c+ alveolar macrophages and F4/80lowCD206low macrophages but decreased F4/80highCD206high macrophages. hMSCs administration ameliorated these effects of hyperoxia, notably reducing numbers of CD11b+CD11c+ and F4/80lowCD206low macrophages; in contrast, F4/80highCD206high macrophages were increased. Genes characteristic of anti-inflammatory ‘M2’ macrophages (Arg1, Stat6, Retnla, Mrc1, Il27ra, Chil3, and Il12b) were up-regulated, and pro-inflammatory ‘M1’ macrophages (Cd86, Stat1, Socs3, Slamf1, Tnf, Fcgr1, Il12b, Il6, Il1b, and Il27ra) were downregulated in isolated lung macrophages from hyperoxia-exposed mice administered hMSCs, compared to mice without hMSCs. Hydroxyproline assay at day 14 showed that the 2-fold increase in lung collagen following hyperoxia was reduced to control levels in mice administered hMSCs. By day 56 (early adulthood), hMSC administration had attenuated structural changes in hyperoxia-exposed lungs. Conclusions Our findings suggest that hMSCs reduce neonatal lung injury caused by hyperoxia by modulation of macrophage phenotype. Not only did our cell-based therapy using hMSC induce structural repair, it limited the progression of pulmonary fibrosis. Electronic supplementary material The online version of this article (10.1186/s12931-018-0816-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ali Al-Rubaie
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrea F Wise
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Foula Sozo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
13
|
Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation. Stem Cells Int 2018; 2018:9468085. [PMID: 29713352 PMCID: PMC5866868 DOI: 10.1155/2018/9468085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the “hypoxic niches” present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.
Collapse
|