1
|
Chen F, Zhang W, Gao X, Yuan H, Liu K. The Role of Small Interfering RNAs in Hepatocellular Carcinoma. J Gastrointest Cancer 2024; 55:26-40. [PMID: 37432548 DOI: 10.1007/s12029-023-00911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a primary liver cancer with high mortality, is the most common malignant tumor in the world. Currently, the effect of routine treatment is poor, especially for this kind of cancer with strong heterogeneity and late detection. In the past decades, the researches of gene therapy for HCC based on small interfering RNA have blossomed everywhere. This is a promising therapeutic strategy, but the application of siRNA is limited by the discovery of effective molecular targets and the delivery system targeting HCC. As the deepening of research, scientists have developed many effective delivery systems and found more new therapeutic targets. CONCLUSIONS This paper mainly reviews the research on HCC treatment based on siRNA in recent years, and summarizes and classifies the HCC treatment targets and siRNA delivery systems.
Collapse
Affiliation(s)
- Feng Chen
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Wang Zhang
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinran Gao
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Yuan
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
3
|
Kiani Ghalesardi O, Zaker F, Ghotaslou A, Boustani H, Rezvani MR, Kiani J, Shahidi M. Effect of siRNA-mediated silencing of p53R2 gene on sensitivity of T-ALL cellsto Daunorubicin. Gene 2023; 880:147622. [PMID: 37419428 DOI: 10.1016/j.gene.2023.147622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION p53R2 is a p53-inducible protein that, as one of the subunits of ribonucleotide reductase, plays an important role in providing dNTPs for DNA repair. Although p53R2 is associated with cancer progression, its role in T-cell acute lymphoblastic leukemia (T-ALL) cells is unknown. Therefore, in this study, we evaluated the effect of p53R2 silencing on double-stranded DNA breaks, apoptosis and cell cycle of T-ALL cells treated with Daunorubicin. METHODS Transfection was performed using Polyethyleneimine (PEI). Gene expression was measured using real-time PCR and protein expression was evaluated using Western blotting. Cell metabolic activity and IC50 were calculated using MTT assay, formation of double-stranded DNA breaks was checked using immunohistochemistry for γH2AX, and cell cycle and apoptosis were evaluated using flow cytometry. RESULTS We found that p53 silencing synergistically inhibited the growth of T-ALL cells by Daunorubicin. p53R2 siRNA in combination with Daunorubicin but not alone increases the rate of DNA double-strand breaks in T-ALL cells. In addition, p53R2 siRNA significantly increased Daunorubicin-induced apoptosis. p53R2 siRNA also caused a non-significant increase in cells in G2 phase. CONCLUSION The results of the present study showed that silencing of p53R2 using siRNA can significantly increase the antitumor effects of Daunorubicin on T-ALL cells. Therefore, p53R2 siRNA has the potential to be used as an adjuvant therapy in combination with Daunorubicin in T-ALL.
Collapse
Affiliation(s)
- Omid Kiani Ghalesardi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical laboratory sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Boustani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Rezvani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide reductase subunit switching in hepatoblastoma drug response and relapse. Commun Biol 2023; 6:249. [PMID: 36882565 PMCID: PMC9992519 DOI: 10.1038/s42003-023-04630-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
Affiliation(s)
- Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meifen Lu
- Center for Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide Reductase Subunit Switching in Hepatoblastoma Drug Response and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36747774 PMCID: PMC9900781 DOI: 10.1101/2023.01.24.525404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 ( RRM2 ) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B . Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
|
6
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
7
|
Du T, Wang D, Wan X, Xu J, Xiao Q, Liu B. Regulatory effect of microRNA-223-3p on breast cancer cell processes via the Hippo/Yap signaling pathway. Oncol Lett 2021; 22:516. [PMID: 33986876 PMCID: PMC8114478 DOI: 10.3892/ol.2021.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
According to the 2018 global cancer statistics, the incidence and mortality rates of breast cancer are increasing gradually, which seriously threatens the health of women. MicroRNA-223-3p (miR-223-3p) can promote the proliferation and invasion of breast cancer cells. Hippo/Yes-related protein (Yap) signaling pathway activation has been found in a variety of tumors. The present study aimed to investigate the potential mechanism of miR-223-3p in breast cancer. The Cell Counting Kit-8 assay was used to detect cell viability and flow cytometry was used to detect apoptosis. The abilities of cell migration and invasion were detected using scratch and Transwell assays, as well as reverse transcription-quantitative PCR and western blotting to detect gene and protein expression, respectively. The current results demonstrated that miR-223-3p transcription levels were increased in breast cancer cells, and inhibition of miR-223-3p gene expression decreased cell proliferation, migration and invasion. Additionally, inhibition of miR-223-3p expression inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells. miR-223-3p promoted cell proliferation, migration, invasion and EMT, and the western blotting results demonstrated that miR-223-3p inhibition increased the phosphorylation of Yap1 and the protein expression levels of large tumor suppressor kinase 1. In conclusion, results from the present results suggested that miR-223-3p may promote cell proliferation, migration, invasion and EMT through the Hippo/Yap signaling pathway. Therefore, miR-223-3p may be a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Tonghua Du
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dan Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaoyu Wan
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingwei Xu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Qi Xiao
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bin Liu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
8
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
9
|
Ghafouri-Fard S, Glassy MC, Abak A, Hussen BM, Niazi V, Taheri M. The interaction between miRNAs/lncRNAs and Notch pathway in human disorders. Biomed Pharmacother 2021; 138:111496. [PMID: 33743335 DOI: 10.1016/j.biopha.2021.111496] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Notch pathway is a signaling cascade with important impacts on cell proliferation, differentiation, developmental processes and tissue homeostasis. This pathway also regulates stem cell properties, thus being involved in both normal developmental processes and metastatic capacity of cancer cells. Lots of lncRNAs and miRNAs have been recognized that control Notch pathway at some levels or their expression is regulated by this pathway. FOXD2-AS1, MEG3, ANRIL, linc-OIP5, lincRNA-p21, CBR3-AS1, HOTAIR, PVT1 and GAS5 are among lncRNAs that interact with Notch signaling. miR-19, miR-21, miR-33a, miR-8/200, miR-34a, miR-146a, miR-37, miR-100, miR-107 and several other miRNAs have functional interplay with this signaling cascade. In the present review article, we have illuminated the interplay between lncRNAs/miRNAs and Notch pathway in two distinct contexts i.e. cancers and non-neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Hanafy NA, Leporatti S, El-Kemary M. Mucoadhesive curcumin crosslinked carboxy methyl cellulose might increase inhibitory efficiency for liver cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111119. [DOI: 10.1016/j.msec.2020.111119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 01/18/2023]
|
11
|
Alamdari-Palangi V, Karami Z, Karami H, Baazm M. MiRNA-7 Replacement Effect on Proliferation and Tarceva-Sensitivity in U373-MG Cell Line. Asian Pac J Cancer Prev 2020; 21:1747-1753. [PMID: 32592373 PMCID: PMC7568905 DOI: 10.31557/apjcp.2020.21.6.1747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deregulation of the EGFR signaling pathway activity has been shown to can be effective in resistance to EGFR-TKIs, such as Tarceva (erlotinib), in glioblastoma cells. In addition, reports have shown that the reduction of miRNA-7 expression levels is associated with an increase in the expression of EGFR. Here, we evaluated the effect of miRNA-7 on EGFR expression and sensitivity of the U373-MG glioblastoma to erlotinib. METHODS The effect of miRNA-7 on EGFR expression was examined using RT-qPCR and western blotting. Trypan blue and MTT assays were performed to explore the effect of treatments on cell growth and survival, respectively. The combination index analysis was used to evaluate the interaction between drugs. Apoptosis was measured by ELISA cell death assay. RESULTS We showed that miRNA-7 markedly inhibited the expression of EGFR and decreased the growth of glioblastoma cells, relative to blank control and negative control miRNA (p < 0.05). Introduction of miRNA-7 synergistically increased the sensitivity of the U373-MG cells to erlotinib. Results of apoptosis assay demonstrated that miRNA-7 can trigger apoptosis and enhance the erlotinib-mediated apoptosis. CONCLUSIONS Our results show that miRNA-7 plays a critical role in the growth, survival and sensitivity of the U373-MG cells to erlotinib by targeting EGFR. Thus, miRNA-7 replacement therapy can become an effective therapeutic procedure in glioblastoma.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.,Department of Molecular Medicine and Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Karami
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Arak University of Medical Sciences, Arak, Iran.,Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
12
|
Roychoudhury S, Kumar A, Bhatkar D, Sharma NK. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020; 16:687-700. [PMID: 32253930 DOI: 10.2217/fon-2019-0458] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
In recent, intra- and inter-tumor heterogeneity is seen as one of key factors behind success and failure of chemotherapy. Incessant use of doxorubicin (DOX) drug is associated with numerous post-treatment debacles including cardiomyopathy, health disorders, reversal of tumor and formation of secondary tumors. The module of cancer treatment has undergone evolutionary changes by achieving crucial understanding on molecular, genetic, epigenetic and environmental adaptations by cancer cells. Therefore, there is a paradigm shift in cancer therapeutic by employing amalgam of peptide mimetic, small RNA mimetic, DNA repair protein inhibitors, signaling inhibitors and epigenetic modulators to achieve targeted and personalized DOX therapy. This review summarizes on recent therapeutic avenues that can potentiate DOX effects by removing discernible pitfalls among cancer patients.
Collapse
Affiliation(s)
- Sayantani Roychoudhury
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Ajay Kumar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devyani Bhatkar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
13
|
Wang Y, Wang G, Tan X, Ke K, Zhao B, Cheng N, Dang Y, Liao N, Wang F, Zheng X, Li Q, Liu X, Liu J. MT1G serves as a tumor suppressor in hepatocellular carcinoma by interacting with p53. Oncogenesis 2019; 8:67. [PMID: 31732712 PMCID: PMC6858331 DOI: 10.1038/s41389-019-0176-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Poor prognosis of hepatocellular carcinoma (HCC) patients is frequently associated with rapid tumor growth, recurrence and drug resistance. MT1G is a low-molecular weight protein with high affinity for zinc ions. In the present study, we investigated the expression of MT1G, analyzed clinical significance of MT1G, and we observed the effects of MT1G overexpression on proliferation and apoptosis of HCC cell lines in vitro and in vivo. Our results revealed that MT1G was significantly downregulated in tumor tissues, and could inhibit the proliferation as well as enhance the apoptosis of HCC cells. The mechanism study suggested that MT1G increased the stability of p53 by inhibiting the expression of its ubiquitination factor, MDM2. Furthermore, MT1G also could enhance the transcriptional activity of p53 through direct interacting with p53 and providing appropriate zinc ions to p53. The modulation of MT1G on p53 resulted in upregulation of p21 and Bax, which leads cell cycle arrest and apoptosis, respectively. Our in vivo assay further confirmed that MT1G could suppress HCC tumor growth in nude mice. Overall, this is the first report on the interaction between MT1G and p53, and adequately uncover a new HCC suppressor which might have therapeutic values by diminishing the aggressiveness of HCC cells.
Collapse
Affiliation(s)
- Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Gaoxiong Wang
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xionghong Tan
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Yuan Dang
- Department of Comparative Medicine, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian, 350025, People's Republic of China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Qin Li
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China.
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China.
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
| |
Collapse
|
14
|
Specific driving of the suicide E gene by the CEA promoter enhances the effects of paclitaxel in lung cancer. Cancer Gene Ther 2019; 27:657-668. [PMID: 31548657 DOI: 10.1038/s41417-019-0137-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 11/08/2022]
Abstract
Classical chemotherapy for lung cancer needs new strategies to enhance its antitumor effect. The cytotoxicity, nonspecificity, and low bioavailability of paclitaxel (PTX) limits their use in this type of cancer. Suicide gene therapy using tumor-specific promoters may increase treatment effectiveness. We used carcinoembryonic antigen (CEA) as a tumor-specific promoter to drive the bacteriophage E gene (pCEA-E) towards lung cancer cells (A-549 human and LL2 mice cell lines) but not normal lung cells (L132 human embryonic lung cell line), in association with PTX as a combined treatment. The study was carried out using cell cultures, tumor spheroid models (MTS), subcutaneous induced tumors and lung cancer stem cells (CSCs). pCEA-E induced significant inhibition of A-549 and LL2 cell proliferation in comparison to L132 cells, which have lower CEA expression levels. Moreover, pCEA-E induced an important decrease in volume growth of A-549 and LL2 MTS producing intense apoptosis, in comparison to L132 MTS. In addition, pCEA-E enhanced the antitumor effects of PTX when combined, showing a synergistic effect. This effect was also observed in A-549 CSCs, which have been related to the recurrence of cancer. The in vivo study corroborated the effectiveness of the pCEA-E-PTX combined therapy, inducing a greater decrease in tumor volume compared to PTX and pCEA-E alone. Our results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically towards lung cancer cells, and may be used to enhance the effectiveness of PTX against this type of tumor.
Collapse
|
15
|
Sarkhosh‐Inanlou R, Molaparast M, Mohammadzadeh A, Shafiei‐Irannejad V. Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin‐resistant ovarian cancer (A2780) cells. Chem Biol Drug Des 2019; 95:215-223. [DOI: 10.1111/cbdd.13621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Roya Sarkhosh‐Inanlou
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| | - Morteza Molaparast
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| | - Adel Mohammadzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
- Department of Immunology and Genetic Urmia University of Medical Sciences Urmia Iran
| | - Vahid Shafiei‐Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| |
Collapse
|
16
|
Mashayekhi S, Yousefi B, Tohidi E, Darband SG, Mirza‐Aghazadeh‐Attari M, Sadighparvar S, Kaviani M, Shafiei‐Irannejad V, Kafil HS, Karimian A, Jadidi‐Niaragh F, Majidinia M. Overexpression of tensin homolog deleted on chromosome ten (PTEN) by ciglitazone sensitizes doxorubicin‐resistance leukemia cancer cells to treatment. J Cell Biochem 2019; 120:15719-15729. [DOI: 10.1002/jcb.28841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Samira Mashayekhi
- Immunology Research Center Tabriz University of Medical Sciences Iran
| | - Bahman Yousefi
- Immunology Research Center Tabriz University of Medical Sciences Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Ehsan Tohidi
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center Urmia University of Medical Sciences Urmia Iran
| | - Mohammad Mirza‐Aghazadeh‐Attari
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
- Aging Research Institute Tabriz University of Medical Sciences Tabriz Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center Urmia University of Medical Sciences Urmia Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics Acadia University Wolfville Nova Scotia Canada
| | | | | | - Ansar Karimian
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | | | - Maryam Majidinia
- Tumor Research Center Urmia University of Medical Sciences Urmia Iran
| |
Collapse
|
17
|
Polyelectrolyte Carboxymethyl Cellulose for Enhanced Delivery of Doxorubicin in MCF7 Breast Cancer Cells: Toxicological Evaluations in Mice Model. Pharm Res 2019; 36:68. [DOI: 10.1007/s11095-019-2598-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 01/17/2023]
|
18
|
Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei‐Irannejad V, Kheyrollah M, Yousefi M, Majidinia M, Yousefi B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 2019; 234:12267-12277. [PMID: 30697727 DOI: 10.1002/jcp.27972] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- Cancer & Immunology Research Center, Kurdistan University of Medical Sciences Sanandaj Iran
- Student Research Committee, Babol University of Medical Sciences Babol Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science Tabriz Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Sona Rafieian
- Department of Oral and Maxillofacial Pathology School of Dentistry, Zanjan University of Medical Sciences Zanjan Iran
| | | | - Maryam Kheyrollah
- Department of Molecular Medicine National Institue of Genetic Engeneering and Biotechnology Tehran Iran
| | - Mehdi Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Majidinia
- Tumor Research Center, Urmia University of Medical Sciences Urmia Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
19
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
20
|
Karimian A, Mir SM, Parsian H, Refieyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 2018; 120:10248-10272. [PMID: 30592328 DOI: 10.1002/jcb.28309] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022]
Abstract
The phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway is one of the well-characterized and most important signaling pathways activated in response to DNA damage. This review discusses the most recent discoveries on the involvement of PI3K/Akt signaling pathway in cancer development, as well as stimulation of some important signaling networks involved in the maintenance of cellular homeostasis upon DNA damage, with an exploration of how PI3K/Akt signaling pathway contributes to the regulation of modulators and effectors underlying DNA damage response, the intricate, protein-based signal transduction network, which decides between cell cycle arrest, DNA repair, and apoptosis, the elimination of irreparably damaged cells to maintain homeostasis. The review continues by looking at the interplay between cell cycle checkpoints, checking the repair of damage inflicted to the DNA before entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling pathway. We then investigate the challenges the cells overcome to ameliorate damages induced by oxidative activities, for example, the recruitment of many pathways and factors to maintain integrity and hemostasis. Finally, the review provides a discussion of how cells use the PI3K/Akt signaling pathway to regulate the balance between these networks.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mostafa Mir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sona Refieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Gao X, Yao X, Yang H, Deng K, Guo Y, Zhang T, Zhang G, Wang F. Role of FGF9 in sheep testis steroidogenesis during sexual maturation. Anim Reprod Sci 2018; 197:177-184. [DOI: 10.1016/j.anireprosci.2018.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
|
22
|
Ghasemi A, Khanzadeh T, Zadi Heydarabad M, Khorrami A, Jahanban Esfahlan A, Ghavipanjeh S, Gholipour Belverdi M, Darvishani Fikouhi S, Darbin A, Najafpour M, Azimi A. Evaluation of BAX and BCL-2 Gene Expression and Apoptosis Induction in Acute Lymphoblastic Leukemia Cell Line CCRFCEM after High- Dose Prednisolone Treatment. Asian Pac J Cancer Prev 2018; 19:2319-2323. [PMID: 30141309 PMCID: PMC6171400 DOI: 10.22034/apjcp.2018.19.8.2319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: Glucocorticoids are one of the most important drugs in the treatment of acute lymphoblastic leukemia
for children. It is very important to response to glucocorticoid in the prognosis of these patients. Therefore, resistance
to treatment is a major problem in lymphoid leukemia cases. In, this study, CCRF-CEM cell line was selected as a
chemotherapy-resistant model. The aim of this study was to evaluate the effect of high dose prednisolone on induction
of apoptosis and changes in BAX and BCL-2 gene expression at different times. Methods: CCRF-CEM cell lines were
grown in standard conditions. Based on previous studies, a dose of 700 μM as subtoxic dose was selected. Changes in
gene expression of BAX and BCL-2 were evaluated by using real time PCR techniques. Also stained with annexin V
and the induction of apoptosis was assessed by FACS machine. Results: In this study it was found that prednisolone in
high doses at different times significantly increased the gene expression of BAX and on the other hand the amount of
BCL-2 expression was reduced. Cells that treated for 48 hours had more significant changes in gene expression. Based
on flowcytometry data, prednisolone can induce apoptosis in a time dependent manner on this cancerous resistant cell
line. Conclusions: Apoptosis induced by high-dose prednisolone in the CCRF-CEM cells, which is almost resistant,
and possibly mediated by reducing the expression of BCL-2 and BAX up-regulation.
Collapse
Affiliation(s)
- Amin Ghasemi
- Student Research Committee, Maragheh University of Medical Sciences, Maragheh, Iran.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alshamsan A. STAT3-siRNA induced B16.F10 melanoma cell death: more association with VEGF downregulation than p-STAT3 knockdown. Saudi Pharm J 2018; 26:1083-1088. [PMID: 30532628 PMCID: PMC6260487 DOI: 10.1016/j.jsps.2018.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
STAT3 knockdown by small interfering RNA (siRNA) has been described to inhibit carcinogenic growth in various types of tumors. Earlier we have reported delivery of siRNA by oleic acid- and stearic acid-modified-polyethylenimine and enhancement of silencing of STAT3 by small interfering RNA (siRNA) in B16.F10 melanoma cell lines and consequent tumor suppression. Present investigation mainly focused on the downstream events involved in B16.F10 melanoma cell death and consequent tumor suppression following knockdown of p-STAT3 by siRNA. Lipid-substituted polyethylenimine (PEI)-p-STAT3-siRNA were prepared and characterized by measuring its N/P ratio, zeta potential, size, association and dissociation with siRNA. B16.F10 melanoma cells were treated with six different concentrations of PEI-p-STAT3-siRNA (200, 100, 50, 25, 12.5 and 6.25 nM). Downregulation of p-STAT3 and VEGF were studied using western blot and ELISA in association with the melanoma cell death. PEI-p-STAT3-siRNA hydrodynamic diameter ranged from 110 to 270 nm. PEI assisted p-STAT3-siRNA delivery exhibited increased uptake by B16.F10, when analyzed by fluorescent and confocal microscopy along with flowcytometry. It induced concentration-dependent knockdown of the p-STAT3 that also downregulated VEGF expression in similar fashion and induced B16.F10 cell death. Higher concentrations of p-STAT3-siRNA appear to significantly downregulate the VEGF expression via p-STAT3 knockdown. Decreasing survival of B16.F10 cells with the increasing concentration of p-STAT3-siRNA significantly correlated with VEGF downregulation, not with p-STAT3 expression. Data suggest that VEGF downregulation following knockdown of p-STAT3 may be a key event in survival reduction in B16.F10 melanoma cells and.
Collapse
Affiliation(s)
- Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Saudi Arabia.,King Abdullah Institute for Nanotechnology, King Saud University, Saudi Arabia
| |
Collapse
|
24
|
Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B. Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 2018; 66-67:30-41. [PMID: 29723707 DOI: 10.1016/j.dnarep.2018.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Despite their simple structure, the Notch family of receptors regulates a wide-spectrum of key cellular processes including development, tissue patterning, cell-fate determination, proliferation, differentiation and, cell death. On the other hand, accumulating date pinpointed the role of non-coding microRNAs, namely miRNAs in cancer initiation/progression via regulating the expression of multiple oncogenes and tumor suppressor genes, as such the Notch signaling. It is now documented that these two partners are in one or in the opposite directions and rule together the cancer fate. Here, we review the current knowledge relevant to this tricky interplay between different miRNAs and components of Notch signaling pathway. Further, we discuss the implication of this crosstalk in cancer progression/regression in the context of cancer stem cells, tumor angiogenesis, metastasis and emergence of multi-drug resistance. Understanding the molecular cues and mechanisms that occur at the interface of miRNA and Notch signaling would open new avenues for development of novel and effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rana Jahanban-Esfahlan
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|