1
|
Sohail A, Lu C, Xu P. Genetic and molecular mechanisms underlying the male sterility in rice. J Appl Genet 2025; 66:251-265. [PMID: 39627604 DOI: 10.1007/s13353-024-00923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 04/16/2025]
Abstract
Male reproductive development is a complex and highly ordered phenomenon which demands comprehensive understandings of underlying molecular mechanisms to expand its scope for crop improvement. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Although male sterility is not a good trait for the plant itself, its wider application in hybrid rice breeding has made it valuable. The currently widely used male sterile line breeding systems mainly include the following: three-line hybrid rice based on cytoplasmic male sterility and two-line hybrid rice based on environmentally sensitive gene male sterility. The study of male sterility is an excellent thoroughfare to critically understand the regulatory mechanisms essential for the complicated male reproductive developmental process. The unique trait of male sterility also provides valuable resources and convenience for the genetic improvement of rice hybrids. Therefore, deeper and broader understandings about the genetic causes of male sterility are necessary for both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China
| | - Chengkai Lu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| | - Peng Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| |
Collapse
|
2
|
Gao YJ, Zhang YL, Wang WH, Latif A, Wang YT, Tang WQ, Pu CX, Sun Y. Protein phosphatase 2A B'α and B'β promote pollen wall construction partially through BRASSINAZOLE-RESISTANT 1-activated cysteine protease gene CEP1 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1735-1751. [PMID: 39798077 DOI: 10.1093/jxb/eraf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of the tapetum. Our results demonstrated an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grain harboured sticky remnants and tectum breakages, resulting in failed release. B'α and B'β functioned partially through dephosphorylating and activating BRASSINAZOLE-RESISTANT 1 (BZR1). The bzr1 bes1 double and higher-order mutants of this BZR1/BES1 family displayed similar defects in the pollen wall, while bzr1-1D, having an active form of the BRZ1 protein, exhibited fertile pollen grains in a B'α and B'β dependent manner. Correspondingly, the level of phospho-BZR1 was increased and dephospho-BZR1 was decreased in b'aβ and bzr1-1D/b'aβ at anther stages 8-9 as compared with Col-0 and bzr1-1D, respectively. A cysteine protease gene CEP1 was identified as a BZR1 target, whose transcriptional activation necessitates brassinosteroid (BR)-responsive elements in the promoter region and the BZR1 DNA binding domain. The mRNA level of CEP1 at stages 8-9 was extremely low in bzr1 and bzr1 bes1, but higher in Col-0 and bzr1-1D depending on B'α and B'β. Furthermore, cep1 mutants displayed similar defects in the pollen wall. In brief, this study uncovered a PP2A-BZR1-CEP1 regulatory module, providing a new insight into pollen maturation mechanisms.
Collapse
Affiliation(s)
- Ying-Jie Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu-Lan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wen-Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yue-Tian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wen-Qiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
3
|
Chen DB, Zhou R, Wang HM, Zhang PP, Yang ZF, Xuan DD, Zhang YX, Zhan XD, Cao LY, Cheng SH, Sun LP. OsLAP3/OsSTRL2, encoding a rice strictosidine synthase, is required for anther cuticle formation and pollen exine patterning in rice. FRONTIERS IN PLANT SCIENCE 2025; 15:1508828. [PMID: 39902213 PMCID: PMC11789761 DOI: 10.3389/fpls.2024.1508828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025]
Abstract
The formation of the anther wall and the development of pollen processes, central to rice fertility and yield, are highly dependent on the synthesis and accumulation of lipid polymers. Although several regulatory factors related to lipid biosynthesis during pollen wall development have been identified, the molecular mechanisms controlling these processes remain poorly understood. In this study, a male-sterile rice mutant, lap3, was identified, characterized by normal vegetative growth but complete male sterility due to delayed programmed cell death (PCD) in tapetal cells and defects in anther cuticle and pollen exine formation. Map-based cloning revealed that OsLAP3 is a new allele of the strictosidine synthase-like gene, OsSTRL2. Functional analysis, including complementation and CRISPR/Cas9-based gene editing, confirmed that the 2-nucleotide deletion in the OsLAP3 is responsible for the male sterility phenotype. OsLAP3 is homologous to the maize ZmMS45, the core recessive nuclear sterile gene of maize Seed Production Technology (SPT), and localizes to the endoplasmic reticulum and plays a conserved role in anther development and pollenformation. Gene expression analysis revealed a significant downregulation of key genes involved in anther development and sporopollenin biosynthesis in lap3 anthers. Furthermore, lipid profiling demonstrated a marked reduction in both wax and cutin content. These findings establish OsLAP3 as a critical regulator of fatty acid synthesis and highlight its role in anther cuticle formation and pollen exine development. The findings of this study provide valuable insights into the molecular regulation of lipid biosynthesis during rice male reproductive development and offer potential applications for hybrid rice breeding.
Collapse
Affiliation(s)
- Dai-bo Chen
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Ran Zhou
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Hui-min Wang
- Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Pei-pei Zhang
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Zheng-fu Yang
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Dan-dan Xuan
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Ying-xin Zhang
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Xiao-deng Zhan
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Li-yong Cao
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Shi-hua Cheng
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Lian-ping Sun
- State Key Laboratory of Rice Biology and Breeding, National Center of Rice Improvement, China National Rice Research Institute, Hangzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
4
|
Xu Y, Zhou S, Tian J, Zhao W, Wei J, He J, Tan W, Shang L, He X, Li R, Wang Y, Qin B. A β-ketoacyl-CoA synthase encoded by DDP1 controls rice anther dehiscence and pollen fertility by maintaining lipid homeostasis in the tapetum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:1. [PMID: 39627399 DOI: 10.1007/s00122-024-04786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/10/2024] [Indexed: 02/02/2025]
Abstract
KEY MESSAGE DDP1, encoding a β-Ketoacyl-CoA Synthase, regulates rice anther dehiscence and pollen fertility by affecting the deposition of lipid on anther epidermis and pollen wall. Anther dehiscence and pollen fertility are crucial for male fertility in rice. Here, we studied the function of Defective in Dehiscence and Pollen1 (DDP1), a novel member of the KCS family in rice, in regulating anther dehiscence and pollen fertility. DDP1 encodes an endoplasmic reticulum (ER)-localized protein and is ubiquitously expressed in various organs, predominately in the microspores and tapetum. The ddp1 mutant exhibited partial male sterility attributed to defective anther dehiscence and pollen fertility, which was notably distinct from those observed in Arabidopsis thaliana and rice mutants associated with lipid metabolism. Mutations of DDP1 altered the content and composition of wax on anther epidermis and pollen wall, causing abnormalities in their morphology. Moreover, genes implicated in lipid metabolism, pollen development, and anther dehiscence exhibited significantly altered expression levels in the ddp1 mutant. These findings indicate that DDP1 controls anther dehiscence and pollen fertility to ensure normal male development by modulating lipid homeostasis in the tapetum, thereby enhancing our understanding of the mechanisms underlying rice anther dehiscence and pollen fertility.
Collapse
Affiliation(s)
- Yibo Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Shixu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Jingfei Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Wenfeng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Jianxin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Juan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Wenye Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Yongfei Wang
- Agricultural Mechanization Service Center, Bama Yao Autonomous County, Guangxi Zhuang Autonomous Region, Bama, 547500, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
5
|
Sun Y, Ang Y, Fu M, Bai Y, Chen J, He Y, Zeng H. Temperature change regulates pollen fertility of a PTGMS rice line PA64S by modulating the ROS homeostasis and PCD within the tapetum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:615-636. [PMID: 39226401 DOI: 10.1111/tpj.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Photoperiod and temperature-sensitive male sterility rice is an important line for two-line hybrid rice, and the changes in the cultivation temperature strictly control its pollen fertility. However, the mechanism by which temperature variation regulates pollen fertility is still unclear. This study obtained stable fertile PA64S(F) and sterile PA64S(S) rice from PA64S by controlling temperature changes. PA64S(F) shows a normal anther development and fertile pollen under low temperature (21°C), and PA64S(S) shows delayed degradation of the tapetum cells, leading to abnormal pollen wall formation and ubisch development under normal temperature (28°C). The accumulation of reactive oxygen species (ROS) positively correlates with the programmed cell death (PCD) process of tapetum cells. The delayed accumulation of ROS in the PA64S(S) tapetum at early stages leads to a delayed initiation of the PCD process. Importantly, we localized ascorbic acid (ASA) accumulation in the tapetum cells and determined that ASA is a major antioxidant for ROS homeostasis. ROS-inhibited accumulation plants (PA64S-ASA) demonstrated pollen sterility, higher ASA and lower ROS accumulation in the tapetum, and the absence of PCD processes in the tapetum cell. Abnormal changes in the tapetum of PA64S(S) rice disrupted metabolic pathways such as lipid metabolism, cutin and wax synthesis, sugar accumulation, and phenylpropane, affecting pollen wall formation and substance accumulation, suggesting that the timely accumulation of ROS is critical for male fertility. This study highlights the central role of ROS homeostasis in fertility alteration and also provides an avenue to address the effect of environmental temperature changes on pollen fertility in rice.
Collapse
Affiliation(s)
- Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yina Ang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiu Bai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasheng Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Huang X, Li Y, Chang Z, Yan W, Xu C, Zhang B, He Z, Wang C, Zheng M, Li Z, Xia J, Li G, Tang X, Wu J. Regulation by distinct MYB transcription factors defines the roles of OsCYP86A9 in anther development and root suberin deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1972-1990. [PMID: 38506334 DOI: 10.1111/tpj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhaohuan He
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Minting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiai Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guoliang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
7
|
Sun Z, Liu K, Chen C, Chen D, Peng Z, Zhou R, Liu L, He D, Duan W, Chen H, Huang C, Ruan Z, Zhang Y, Cao L, Zhan X, Cheng S, Sun L. OsLDDT1, encoding a transmembrane structural DUF726 family protein, is essential for tapetum degradation and pollen formation in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111596. [PMID: 36657664 DOI: 10.1016/j.plantsci.2023.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Formation of the pollen wall, which is mainly composed of lipid substances secreted by tapetal cells, is important to ensure pollen development in rice. Although several regulatory factors related to lipid biosynthesis during pollen wall formation have been identified in rice, the molecular mechanisms controlling lipid biosynthesis are unclear. In this study, we isolated the male-sterile rice mutant oslddt1 (leaked and delayed degraded tapetum 1). oslddt1 plants show complete pollen abortion resulting from delayed degradation of the tapetum and blocked formation of Ubisch bodies and pollen walls. OsLDDT1 (LOC_Os03g02170) encodes a DUF726 containing protein of unknown function with highly conserved transmembrane and α/β Hydrolase domains. OsLDDT1 localizes to the endoplasmic reticulum and the gene is highly expressed in rice panicles. Genes involved in regulating fatty acid synthesis and formation of sporopollenin and pollen exine during anther development showed significantly different expression patterns in oslddt1 plants. Interestingly, the wax and cutin contents in mature oslddt1-1 anthers were decreased by 74.07 % and 72.22 % compared to WT, indicating that OsLDDT1 is involved in fatty acid synthesis and affects formation of the anther epidermis. Our results provide as deeper understanding of the role of OsLDDT1 in regulating male sterility and also provide materials for hybrid rice breeding.
Collapse
Affiliation(s)
- Zhihao Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Keke Liu
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Chi Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Zequn Peng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Ran Zhou
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Dengmei He
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China; College of Agronomy, Heilongjiang Bay Agricultural University, Daqing, Heilongjiang 163711, China
| | - Wenjing Duan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Hongmei Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Chenbo Huang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Zheyan Ruan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China; Baoqing Northern Rice Research Center, Northern Rice Research Center of China National Rice Research Institute, Baoqing, Heilongjiang 155600, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China.
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China.
| |
Collapse
|
8
|
Morales KY, Bridgeland AH, Hake KD, Udall JA, Thomson MJ, Yu JZ. Homology-based identification of candidate genes for male sterility editing in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1006264. [PMID: 36589117 PMCID: PMC9795482 DOI: 10.3389/fpls.2022.1006264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) accounts for more than 90% of the world's cotton production, providing natural material for the textile and oilseed industries worldwide. One strategy for improving upland cotton yields is through increased adoption of hybrids; however, emasculation of cotton flowers is incredibly time-consuming and genetic sources of cotton male sterility are limited. Here we review the known biochemical modes of plant nuclear male sterility (NMS), often known as plant genetic male sterility (GMS), and characterized them into four groups: transcriptional regulation, splicing, fatty acid transport and processing, and sugar transport and processing. We have explored protein sequence homology from 30 GMS genes of three monocots (maize, rice, and wheat) and three dicots (Arabidopsis, soybean, and tomato). We have analyzed evolutionary relationships between monocot and dicot GMS genes to describe the relative similarity and relatedness of these genes identified. Five were lowly conserved to their source species, four unique to monocots, five unique to dicots, 14 highly conserved among all species, and two in the other category. Using this source, we have identified 23 potential candidate genes within the upland cotton genome for the development of new male sterile germplasm to be used in hybrid cotton breeding. Combining homology-based studies with genome editing may allow for the discovery and validation of GMS genes that previously had no diversity observed in cotton and may allow for development of a desirable male sterile mutant to be used in hybrid cotton production.
Collapse
Affiliation(s)
- Karina Y. Morales
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Aya H. Bridgeland
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Kater D. Hake
- Cotton Incorporated, Agricultural and Environment Research, Cary, NC, United States
| | - Joshua A. Udall
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - John Z. Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| |
Collapse
|
9
|
Deng Y, Wan Y, Liu W, Zhang L, Zhou K, Feng P, He G, Wang N. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1247-1262. [PMID: 34985538 DOI: 10.1007/s00122-021-04028-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
OsFLA1 positively regulates pollen exine development, and locates in the cellular membrane. Arabinogalactan proteins are a type of hydroxyproline-rich glycoprotein that are present in all plant tissues and cells and play important roles in plant growth and development. Little information is available on the participation of fasciclin-like arabinogalactan proteins in sexual reproduction in rice. In this study, a rice male-sterile mutant, osfla1, was isolated from an ethylmethanesulfonate-induced mutant library. The osfla1 mutant produced withered, shrunken, and abortive pollen. The gene OsFLA1 encoded a FLA protein and was expressed strongly in the anthers in rice. Subcellular localization showed that OsFLA1 was located in the cellular membrane. In the osfla1 mutant, abnormal Ubisch bodies and a discontinuous nexine layer of the microspore wall were observed, which resulted in pollen abortion and ultimately in male sterility. The results show the important role that OsFLA1 plays in male reproductive development in rice.
Collapse
Affiliation(s)
- Yao Deng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yingchun Wan
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Weichi Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lisha Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Kai Zhou
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Grienenberger E, Quilichini TD. The Toughest Material in the Plant Kingdom: An Update on Sporopollenin. FRONTIERS IN PLANT SCIENCE 2021; 12:703864. [PMID: 34539697 PMCID: PMC8446667 DOI: 10.3389/fpls.2021.703864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
The extreme chemical and physical recalcitrance of sporopollenin deems this biopolymer among the most resilient organic materials on Earth. As the primary material fortifying spore and pollen cell walls, sporopollenin is touted as a critical innovation in the progression of plant life to a terrestrial setting. Although crucial for its protective role in plant reproduction, the inert nature of sporopollenin has challenged efforts to determine its composition for decades. Revised structural, chemical, and genetic experimentation efforts have produced dramatic advances in elucidating the molecular structure of this biopolymer and the mechanisms of its synthesis. Bypassing many of the challenges with material fragmentation and solubilization, insights from functional characterizations of sporopollenin biogenesis in planta, and in vitro, through a gene-targeted approach suggest a backbone of polyhydroxylated polyketide-based subunits and remarkable conservation of biochemical pathways for sporopollenin biosynthesis across the plant kingdom. Recent optimization of solid-state NMR and targeted degradation methods for sporopollenin analysis confirms polyhydroxylated α-pyrone subunits, as well as hydroxylated aliphatic units, and unique cross-linkage heterogeneity. We examine the cross-disciplinary efforts to solve the sporopollenin composition puzzle and illustrate a working model of sporopollenin's molecular structure and biosynthesis. Emerging controversies and remaining knowledge gaps are discussed, including the degree of aromaticity, cross-linkage profiles, and extent of chemical conservation of sporopollenin among land plants. The recent developments in sporopollenin research present diverse opportunities for harnessing the extraordinary properties of this abundant and stable biomaterial for sustainable microcapsule applications and synthetic material designs.
Collapse
Affiliation(s)
- Etienne Grienenberger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Teagen D. Quilichini
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:629314. [PMID: 33763090 PMCID: PMC7982899 DOI: 10.3389/fpls.2021.629314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands. The development of the rice varieties with desired traits has become the ultimate need of the time. Genic male sterility is a predominant system that is vastly deployed and exploited for crop improvement. Hence, the identification of new genetic elements and the cognizance of the underlying regulatory networks affecting male sterility in rice are crucial to harness heterosis and ensure global food security. Over the years, a variety of genomics studies have uncovered numerous mechanisms regulating male sterility in rice, which provided a deeper and wider understanding on the complex molecular basis of anther and pollen development. The recent advances in genomics and the emergence of multiple biotechnological methods have revolutionized the field of rice breeding. In this review, we have briefly documented the recent evolution, exploration, and exploitation of genic male sterility to the improvement of rice crop production. Furthermore, this review describes future perspectives with focus on state-of-the-art developments in the engineering of male sterility to overcome issues associated with male sterility-mediated rice breeding to address the current challenges. Finally, we provide our perspectives on diversified studies regarding the identification and characterization of genic male sterility genes, the development of new biotechnology-based male sterility systems, and their integrated applications for hybrid rice breeding.
Collapse
Affiliation(s)
- Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Northern Center of China National Rice Research Institute, Shuangyashan, China
| |
Collapse
|
12
|
Xiang XJ, Sun LP, Yu P, Yang ZF, Zhang PP, Zhang YX, Wu WX, Chen DB, Zhan XD, Khan RM, Abbas A, Cheng SH, Cao LY. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:453-471. [PMID: 33089345 DOI: 10.1007/s00122-020-03706-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.
Collapse
Affiliation(s)
- Xiao-Jiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Ping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zheng-Fu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei-Pei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying-Xin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Wei-Xun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Dai-Bo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Xiao-Deng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Riaz-Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shi-Hua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Li-Yong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
13
|
Song S, Wang T, Li Y, Hu J, Kan R, Qiu M, Deng Y, Liu P, Zhang L, Dong H, Li C, Yu D, Li X, Yuan D, Yuan L, Li L. A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:251-260. [PMID: 32741081 PMCID: PMC7868973 DOI: 10.1111/pbi.13457] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 05/27/2023]
Abstract
Heterosis utilization is the most effective way to improve rice yields. The cytoplasmic male-sterility (CMS) and photoperiod/thermosensitive genic male-sterility (PTGMS) systems have been widely used in rice production. However, the rate of resource utilization for the CMS system hybrid rice is low, and the hybrid seed production for the PTGMS system is affected by the environment. The technical limitations of these two breeding methods restrict the rapid development of hybrid rice. The advantages of the genic male-sterility (GMS) rice, such as stable sterility and free combination, can fill the gaps of the first two generations of hybrid rice technology. At present, the third-generation hybrid rice breeding technology is being used to realize the application of GMS materials in hybrid rice. This study aimed to use an artificial CMS gene as a pollen killer to create a smart sterile line for hybrid rice production. The clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) technology was used to successfully obtain a CYP703A3-deficient male-sterile mutant containing no genetically modified component in the genetic background of indica 9311. Through young ear callus transformation, this mutant was transformed with three sets of element-linked expression vectors, including pollen fertility restoration gene CYP703A3, pollen-lethality gene orfH79 and selection marker gene DsRed2. The maintainer 9311-3B with stable inheritance was obtained, which could realize the batch breeding of GMS materials. Further, the sterile line 9311-3A and restorer lines were used for hybridization, and a batch of superior combinations of hybrid rice was obtained.
Collapse
Affiliation(s)
- Shufeng Song
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Tiankang Wang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Yixing Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Jun Hu
- State Key Laboratory of Hybrid RiceEngineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life SciencesWuhan UniversityWuhanChina
| | - Ruifeng Kan
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics & PhysicsChinese Academy of SciencesChangchunChina
| | - Mudan Qiu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Yingde Deng
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Peixun Liu
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics & PhysicsChinese Academy of SciencesChangchunChina
| | - Licheng Zhang
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Hao Dong
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Chengxia Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Dong Yu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Xinqi Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Dingyang Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Longping Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| | - Li Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
| |
Collapse
|
14
|
Luo T, Zou T, Yuan G, He Z, Li W, Tao Y, Liu M, Zhou D, Zhao H, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Liu H, Wang L, Li P, Li S. Less and shrunken pollen 1 (LSP1) encodes a member of the ABC transporter family required for pollen wall development in rice (Oryza sativa L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Dhaka N, Krishnan K, Kandpal M, Vashisht I, Pal M, Sharma MK, Sharma R. Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum. Sci Rep 2020; 10:897. [PMID: 31964983 PMCID: PMC6972786 DOI: 10.1038/s41598-020-57717-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Sorghum is a self-pollinated crop with multiple economic uses as cereal, forage, and biofuel feedstock. Hybrid breeding is a cornerstone for sorghum improvement strategies that currently relies on cytoplasmic male sterile lines. To engineer genic male sterility, it is imperative to examine the genetic components regulating anther/pollen development in sorghum. To this end, we have performed transcriptomic analysis from three temporal stages of developing anthers that correspond to meiotic, microspore and mature pollen stages. A total of 5286 genes were differentially regulated among the three anther stages with 890 of them exhibiting anther-preferential expression. Differentially expressed genes could be clubbed into seven distinct developmental trajectories using K-means clustering. Pathway mapping revealed that genes involved in cell cycle, DNA repair, regulation of transcription, brassinosteroid and auxin biosynthesis/signalling exhibit peak expression in meiotic anthers, while those regulating abiotic stress, carbohydrate metabolism, and transport were enriched in microspore stage. Conversely, genes associated with protein degradation, post-translational modifications, cell wall biosynthesis/modifications, abscisic acid, ethylene, cytokinin and jasmonic acid biosynthesis/signalling were highly expressed in mature pollen stage. High concurrence in transcriptional dynamics and cis-regulatory elements of differentially expressed genes in rice and sorghum confirmed conserved developmental pathways regulating anther development across species. Comprehensive literature survey in conjunction with orthology analysis and anther-preferential accumulation enabled shortlisting of 21 prospective candidates for in-depth characterization and engineering male fertility in sorghum.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Kushagra Krishnan
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Manu Kandpal
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Ira Vashisht
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Manoj Kumar Sharma
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
16
|
Yang Z, Sun L, Zhang P, Zhang Y, Yu P, Liu L, Abbas A, Xiang X, Wu W, Zhan X, Cao L, Cheng S. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:844-861. [PMID: 31021015 PMCID: PMC6852570 DOI: 10.1111/tpj.14365] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.
Collapse
Affiliation(s)
- Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| |
Collapse
|
17
|
Yang Z, Liu L, Sun L, Yu P, Zhang P, Abbas A, Xiang X, Wu W, Zhang Y, Cao L, Cheng S. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. PLANT MOLECULAR BIOLOGY 2019; 99:175-191. [PMID: 30610522 DOI: 10.1007/s11103-018-0811-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/10/2018] [Indexed: 05/25/2023]
Abstract
OsMS1 functions as a transcriptional activator and interacts with known tapetal regulatory factors through its plant homeodomain (PHD) regulating tapetal programmed cell death (PCD) and pollen exine formation in rice. The tapetum, a hallmark tissue in the stamen, undergoes degradation triggered by PCD during post-meiotic anther development. This degradation process is indispensable for anther cuticle and pollen exine formation. Previous study has shown that PTC1 plays a critical role in the regulation of tapetal PCD. However, it remained unclear how this occurs. To further investigate the role of this gene in rice, we used CRISPR/Cas9 system to generate the homozygous mutant named as osms1, which showed complete male sterility with slightly yellow and small anthers, as well as invisible pollen grains. In addition, cytological observation revealed delayed tapetal PCD, defective pollen exine formation and a lack of DNA fragmentation according to a TUNEL analysis in the anthers of osms1 mutant. OsMS1, which encodes a PHD finger protein, was located in the nucleus of rice protoplasts and functioned as a transcription factor with transcriptional activation activity. Y2H and BiFC assays demonstrated that OsMS1 can interact with OsMADS15 and TDR INTERACTING PROTEIN2 (TIP2). It has been reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated tapetal PCD in rice. Results of qPCR suggested that the expression of the genes associated with tapetal PCD and pollen wall biosynthesis, such as EAT1, AP37, AP25, OsC6 and OsC4, were significantly reduced in osms1 mutant. Taken together, our results demonstrate that the interaction of OsMS1 with known tapetal regulatory factors through its PHD finger regulates tapetal PCD and pollen exine formation in rice.
Collapse
Affiliation(s)
- Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
18
|
Sun L, Xiang X, Yang Z, Yu P, Wen X, Wang H, Abbas A, Muhammad Khan R, Zhang Y, Cheng S, Cao L. OsGPAT3 Plays a Critical Role in Anther Wall Programmed Cell Death and Pollen Development in Rice. Int J Mol Sci 2018; 19:ijms19124017. [PMID: 30545137 PMCID: PMC6321289 DOI: 10.3390/ijms19124017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022] Open
Abstract
In flowering plants, ideal male reproductive development requires the systematic coordination of various processes, in which timely differentiation and degradation of the anther wall, especially the tapetum, is essential for both pollen formation and anther dehiscence. Here, we show that OsGPAT3, a conserved glycerol-3-phosphate acyltransferase gene, plays a critical role in regulating anther wall degradation and pollen exine formation. The gpat3-2 mutant had defective synthesis of Ubisch bodies, delayed programmed cell death (PCD) of the inner three anther layers, and abnormal degradation of micropores/pollen grains, resulting in failure of pollen maturation and complete male sterility. Complementation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) experiments demonstrated that OsGPAT3 is responsible for the male sterility phenotype. Furthermore, the expression level of tapetal PCD-related and nutrient metabolism-related genes changed significantly in the gpat3-2 anthers. Based on these genetic and cytological analyses, OsGPAT3 is proposed to coordinate the differentiation and degradation of the anther wall and pollen grains in addition to regulating lipid biosynthesis. This study provides insights for understanding the function of GPATs in regulating rice male reproductive development, and also lays a theoretical basis for hybrid rice breeding.
Collapse
Affiliation(s)
- Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiaoxia Wen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Hong Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Riaz Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|