1
|
Shan B, Huo Y, Guo Z, Li Q, Pan Z, Li Q, Du X. miR-184, a downregulated ovary-elevated miRNA transcriptionally activated by SREBF2, exerts anti-apoptotic properties in ovarian granulosa cells through inducing SMAD3 expression. Cell Death Dis 2024; 15:892. [PMID: 39695116 DOI: 10.1038/s41419-024-07286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Follicular atresia is the primary threat to female fertility. miRNAs are dysregulated in granulosa cells (GCs) during follicular atresia, and have emerged as crucial regulators of the initiation and progression of follicular atresia. However, the downregulated ovary-elevated (OE) miRNAs and their biological functions in ovary remain elusive. Here, 13 downregulated OE miRNAs were systematically identified by integrating tissue expression high-throughput data and comparative transcriptome analyses, among which miR-184 was specifically highly expressed in ovary but dramatically downregulated during follicular atresia. Low miR-184 levels were also positively correlated with follicular atresia. Based on the in vitro GC and follicle culture system, we found that miR-184 suppressed GC apoptosis and follicular atresia. Mechanistically, miR-184 induced SMAD3 transcription by acting as a saRNA, and also stabilized SMAD3 mRNA by directly binding to its 5'-UTR, which promoted TGF-β pathway activity and its anti-apoptotic effect. In addition, miR-184 was transcribed independently of host gene, which was activated by SREBF2 in an H3K4me3-dependent manner. Comparative analysis revealed that SREBF2 expression and H3K4me3 enrichment on miR-184 promoter in GCs from atretic follicles were dramatically reduced, which leads to the downregulation of miR-184 during follicular atresia. Moreover, the expression pattern, function, target, and regulatory mechanism of miR-184 among mammals are highly conserved and universal. Taken together, our findings demonstrate that miR-184, transcriptionally activated by SREBF2 in an H3K4me3-dependent manner, exerts anti-atretic effects by inducing SMAD3 expression, highlighting that it is a promising regulator for improving follicular development, ovarian health and female fertility.
Collapse
Affiliation(s)
- Baosen Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangan Huo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhennan Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Huang C, Du Z, Shi Y, Sun N, Zhu Z, Yu X, Li A. Growth differentiation factor 9 activates the TGF-β pathway in follicle atresia of Muscovy ducks. Poult Sci 2024; 103:104278. [PMID: 39343644 PMCID: PMC11705381 DOI: 10.1016/j.psj.2024.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Muscovy ducks' high broodiness hinders industry growth. Studying broodiness regulation contributes to the theoretical foundation for enhancing reproductive performance in Muscovy ducks. Experiment 1, a total of 18 Muscovy ducks were divided into 2 groups: Laying group (LO) and Broody group (BO). To collect ovaries for morphological and transcriptome analysis. Experiment 2, Primary Muscovy ducks granulosa cells (GC) were isolated and treated with or without GDF9 at appropriate concentrations as indicated. Experiment 3, GC were treated with or without GDF9 in the presence or absence of a receptor inhibitor. The cell viability, cell apoptosis rate and levels of TGF-β pathway were determined. In vivo, there was a gradual disappearance of follicles in the ovaries and accompanied by follicle atrophy and a concentration of cytoplasm in BO group. The transcriptome expression profile revealed a total of 1,185 up-regulated differentially expressed transcripts (DEs) and 1,258 down-regulated DEs in the BO group compared to the LO group. The up-regulated differentially expressed GDF9 is involved in regulating the TGF-β pathway, which is among the top 10 pathways identified through the KEGG pathway analysis (P < 0.05). Additionally, the fluorescence intensity of apoptosis is primarily observed in the granulosa layers of the ovary. Compared to the LO group, the mRNA level of TGF-β pathway and the protein of GDF9 and p-Smad2/3 were increased in ovary of the BO group (P < 0.05). In vitro, GDF9 supplementation demonstrated does-related promotion of GC (P < 0.01). Compared to CTRL group, 12 ng/mL GDF9 supplementation to GC increased the rate of cell apoptosis, the mRNA and protein expression of TGF-β pathway and the apoptosis-related genes. Pretreatment of GC with GDF9-receptor inhibitor largely abrogated the negative function of GDF9 treatment (P < 0.05). In summary, granulosa cell apoptosis leading to follicle atresia in broodiness of Muscovy ducks is associated with GDF9 activation of the TGF-β pathway. This discovery lays a solid foundation for understanding duck follicular development and enhancing egg production in Muscovy ducks.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ziyuan Du
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhu Shi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ningning Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihao Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Xiao S, Du J, Yuan G, Luo X, Song L. Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives. Reprod Sci 2024; 31:3635-3650. [PMID: 38594585 DOI: 10.1007/s43032-024-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
MicroRNAs (miRNAs) are a class of short single-stranded, noncoding RNAs that affect the translation of mRNAs by imperfectly binding to homologous 3'UTRs. Research on miRNAs in ovarian diseases is constantly expanding because miRNAs are powerful regulators of gene expression and cellular processes and are promising biomarkers. miRNA mimics, miRNA inhibitors and molecules targeting miRNAs (antimiRs) have shown promise as novel therapeutic agents in preclinical development. Granulosa cells (GCs) are supporting cells for developing oocytes in the ovary. GCs regulate female reproductive health by producing sex hormones and LH receptors. Increasing research has reported the relevance of miRNAs in GC pathophysiology. With in-depth studies of disease mechanisms, there are an increasing number of studies on the biomolecular pathways of miRNAs in gynecology and endocrinology. In the present review, we summarize the different functions of GC-related microRNAs in various ovarian disorders, such as polycystic ovary syndrome, premature ovarian insufficiency, premature ovarian failure and ovarian granulosa cell tumors.
Collapse
Affiliation(s)
- Shengmin Xiao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Juan Du
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Guanghui Yuan
- Department of Oncology, Hejiang Hospital of Traditional Chinese Medicine, Luzhou, 611137, People's Republic of China
| | - Xiaohong Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
4
|
Li M, Liang W, Luo Y, Wang J, Liu X, Li S, Hao Z. Transforming growth factor-β1 mediates the SMAD4/BMF pathway to regulate ovarian granulosa cell apoptosis in small tail Han sheep. Theriogenology 2024; 214:360-369. [PMID: 37979327 DOI: 10.1016/j.theriogenology.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor (TGF)-β1 is an important multifunctional cytokine in the TGF-β signaling pathway, which is involved in the molecular regulation of multiple activities, including follicle development and ovulation in female reproductive physiology. However, the biological function of TGF-β1 in follicular development and in regulating the proliferation or apoptosis of granulosa cells in small tail Han sheep remain unclear. In this study, we analyzed the expression levels of TGF-β1 in the ovary at the follicular stage in small tail Han sheep. We further examined the effects of TGF-β1 on the viability, proliferation, and apoptosis of granulosa cells. Differential expression of TGF-β1 at the mRNA and protein levels was detected in the ovaries between the beginning of estrus and at preovulation. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine (EdU) labeling, and flow cytometry assays showed that adding 5 and 10 ng/mL TGF-β1 could improve the viability and growth rate, reduce the apoptosis rate, and reduce the expression level of the pro-apoptotic factor Bcl-2-modifying factor (BMF) in granulosa cells. Treatment of 10 ng/mL TGF-β1 at all time points (except 72 h) significantly increased the positive rate of EdU labeling compared to that of the control group. RNA interference of SMAD4 reversed the decreased apoptosis rate caused by stimulation with 10 ng/mL TGF-β1, accompanied by a corresponding increase in the BMF expression level. Collectively, these results indicate that TGF-β1 plays a role in the ovarian follicular-phase activity of small tail Han sheep by inhibiting the apoptosis of sheep granulosa cells through the SMAD4/BMF pathway to promote proliferation and vitality. This study provides new insight into the molecular mechanism underlying TGF-β1 function regulation in granulosa cells, suggests a new target for the regulation of follicle development, and expands the new field of animal reproduction regulation technology.
Collapse
Affiliation(s)
- Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Weiwei Liang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
5
|
He XH, Xiao YT, Chen WY, Wang MJ, Wu XD, Mei LY, Gao KX, Huang QC, Huang RY, Chen XM. In silico analysis of serum miRNA profiles in seronegative and seropositive rheumatoid arthritis patients by small RNA sequencing. PeerJ 2023; 11:e15690. [PMID: 37525657 PMCID: PMC10387234 DOI: 10.7717/peerj.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a refractory autoimmune disease, affecting about 1% of the world's population. RA is divided into seronegative RA and seropositive RA. However, biomarkers for discriminating between seronegative and seropositive RA have not been reported. In this study, we profiled serum miRNAs in seronegative RA patients (N-RA), seropositive RA patients (P-RA) and healthy controls (HC) by small RNA sequencing. Results indicated that compared with HC group, there were one up-regulated and four downregulated miRNAs in N-RA group (fold change ≥ 2 and P value < 0.05); compared with P-RA group, there were two up-regulated and four downregulated miRNAs in N-RA group; compared with HC group, there were three up-regulated and four downregulated miRNAs in P-RA group. Among them, the level of hsa-miR-362-5p in N-RA group was up-regulated compared with that in HC group and P-RA group, and the level of hsa-miR-6855-5p and hsa-miR-187-3p in P-RA group was upregulated compared with that in N-RA group and HC group. Validation by qPCR confirmed that serum hsa-miR-362-5p level was elevated in N-RA group. Subsequently, by analyzing the target genes using RNAhybrid, PITA, Miranda and TargetScan and functions of differential miRNAs utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the target genes and molecular pathways regulated by miRNAs in seronegative RA and seropositive RA were roughly the same, and miRNAs in these two diseases may participate in the occurrence and development of diseases by regulating the immune system. In conclusion, this study revealed the profiles of serum miRNAs in seronegative and seropositive RA patients for the first time, providing potential biomarkers and targets for the diagnosis and treatment of seronegative and seropositive RA.
Collapse
Affiliation(s)
- Xiao-Hong He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Ting Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mao-Jie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiao-Dong Wu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Yan Mei
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Xin Gao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Chun Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
6
|
Li C, Yan Y, Pan C, Adjei M, Shahzad K, Wang P, Pan M, Li K, Wang Y, Zhao W. Identification and analysis of differentially expressed (DE) circRNA in epididymis of yak and cattleyak. Front Vet Sci 2023; 10:1040419. [PMID: 36825227 PMCID: PMC9941329 DOI: 10.3389/fvets.2023.1040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs), as endogenous non-coding RNA with unique closed ring structure, is closely related to animal reproduction, and understanding the expression of circRNA in yak and cattleyak epididymal tissues is of great significance for understanding cattleyak sterility. Based on this, we screened and identified the differentially expressed circRNA in the epididymis of three yaks and two cattleyak. A total of 1,298 circRNAs were identified in the epididymis of yak and cattleyak, of which 137 differentially expressed (DE) circRNAs and the functions of some of them were elucidated in this research, as well as qPCR verification to 6 circRNAs from the 137 DE circRNAs. Gene Ontology (GO) enrichment analysis suggested that DE circRNAs were mainly related to metabolic process, development process, immune system process, reproductive process, reproduction, biological adhesion and growth. COG classification analysis showed that the DE circRNAs derived genes were mainly related to replication, recombination and repair. KEGG pathway analysis suggested that DE circRNAs were mainly involved in RNA degradation. In addition, we also screened Bta-mir-103, which is a circRNA binding miRNA related to sperm activity.
Collapse
Affiliation(s)
- Chunhai Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yan Yan
- College of Life Sciences, Yan'an University, Yan'An, Shaanxi, China
| | - Cheng Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Michael Adjei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Peng Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Meilan Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kerui Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China,*Correspondence: Ye Wang ✉
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China,Wangsheng Zhao ✉
| |
Collapse
|
7
|
Dai T, Kang X, Yang C, Mei S, Wei S, Guo X, Ma Z, Shi Y, Chu Y, Dan X. Integrative Analysis of miRNA-mRNA in Ovarian Granulosa Cells Treated with Kisspeptin in Tan Sheep. Animals (Basel) 2022; 12:2989. [PMID: 36359113 PMCID: PMC9656243 DOI: 10.3390/ani12212989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Kisspeptin is a peptide hormone encoded by the kiss-1 gene that regulates animal reproduction. Our studies revealed that kisspeptin can regulate steroid hormone production and promote cell proliferation in ovarian granulosa cells of Tan sheep, but the mechanism has not yet been fully understood. We speculated that kisspeptin might promote steroid hormone production and cell proliferation by mediating the expression of specific miRNA and mRNA in granulosa cells. Accordingly, after granulosa cells were treated with kisspeptin, the RNA of cells was extracted to construct a cDNA library, and miRNA-mRNA sequencing was performed. Results showed that 1303 expressed genes and 605 expressed miRNAs were identified. Furthermore, eight differentially expressed miRNAs were found, and their target genes were significantly enriched in progesterone synthesis/metabolism, hormone biosynthesis, ovulation cycle, and steroid metabolism regulation. Meanwhile, mRNA was significantly enriched in steroid biosynthesis, IL-17 signaling pathway, and GnRH signaling pathway. Integrative analysis of miRNA-mRNA revealed that the significantly different oar-let-7b targets eight genes, of which EGR1 (early growth response-1) might play a significant role in regulating the function of granulosa cells, and miR-10a regulates lipid metabolism and steroid hormone synthesis by targeting HNRNPD. Additionally, PPI analysis revealed genes that are not miRNA targets but crucial to other biological processes in granulosa cells, implying that kisspeptin may also indirectly regulate granulosa cell function by these pathways. The findings of this work may help understand the molecular mechanism of kisspeptin regulating steroid hormone secretion, cell proliferation, and other physiological functions in ovarian granulosa cells of Tan sheep.
Collapse
|
8
|
Chen XM, Yao DN, Wang MJ, Wu XD, Deng JW, Deng H, Huang RY, Lu CJ. Deep Sequencing of Plasma Exosomal microRNA Level in Psoriasis Vulgaris Patients. Front Med (Lausanne) 2022; 9:895564. [PMID: 35665333 PMCID: PMC9160332 DOI: 10.3389/fmed.2022.895564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022] Open
Abstract
Psoriasis is a chronic skin disease affecting 1% to 3% of the world population. Psoriasis vulgaris (PV) is the most common form of psoriasis. PV patients suffer from inflamed, pruritic and painful lesions for years (even a lifetime). However, conventional drugs for PV are costly. Considering the need for long-term treatment of PV, it is urgent to discover novel biomarkers and therapeutic targets. Plasma exosomal miRNAs have been identified as the reliable biomarkers and therapy targets of human diseases. Here, we described the levels of serum exosomal miRNAs in PV patients and analyzed the functional features of differently expressed miRNAs and their potential target genes for the first time. We identified 1182 miRNAs including 336 novel miRNAs and 246 differently expressed miRNAs in serum exosomes of healthy people and PV patients. Furthermore, the functional analysis found differently expressed miRNA-regulated target genes enriched for specific GO terms including primary metabolic process, cellular metabolic process, metabolic process, organic substance metabolic process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway containing cellular processes, human diseases, metabolic pathways, metabolism and organismal systems. In addition, we found that some predicted target genes of differentially expressed miRNAs, such as CREB1, RUNX2, EGFR, are both involved in inflammatory response and metabolism. In summary, our study identifies many candidate miRNAs involved in PV, which could provide potential biomarkers for diagnosis of PV and targets for clinical therapies against PV.
Collapse
Affiliation(s)
- Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-Ni Yao
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Mao-Jie Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Dong Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing-Wen Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan-Jian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Winter E, Cisilotto J, Silva AH, Rosolen D, Fabichak AP, Rode MP, Creczynski-Pasa TB. MicroRNAs: Potential biomarkers for reproduction, diagnosis, prognosis, and therapeutic in domestic animals. Res Vet Sci 2021; 142:117-132. [PMID: 34942556 DOI: 10.1016/j.rvsc.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates. This review provides an overview of the current knowledge regarding miRNAs' role in reproduction and animal diseases, diagnostic and therapy.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil.
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Ana Paula Fabichak
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil
| | - Michele Patricia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| |
Collapse
|
10
|
Long noncoding RNAs profiling in ovary during laying and nesting in Muscovy ducks (Cairina moschata). Anim Reprod Sci 2021; 230:106762. [PMID: 34022609 DOI: 10.1016/j.anireprosci.2021.106762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
There are recent reports of the important functions of long noncoding RNAs (lncRNAs) in female reproductive and ovarian development. Studies in which there was characterization of lncRNAs in the ovaries of laying compared with nesting poultry, however, are limited. In this study, RNA libraries were constructed by obtaining sequencing data of ovarian tissues from laying and nesting Muscovy ducks. In the ovarian tissues of Muscovy ducks, a total of 334 differentially abundant mRNA transcripts (DEGs) and 36 differentially abundant lncRNA transcripts were identified in the nesting period, when compared with during the laying period. These results were subsequently validated by qRT-PCR using nine randomly-selected lncRNAs and six randomly-selected DAMTs. Furthermore, the cis- and trans-regulatory target genes of differentially abundant lncRNA transcripts were identified, and lncRNA-gene interaction networks of 34 differentially abundant lncRNAs and 263 DEGs were constructed. A total of 7601 lncRNAs neighboring 10,542 protein-coding genes were identified and found to be enriched in the Wnt signaling pathway and oocyte meiosis pathways associated with follicular development. Overall, only 11 cis-targets and 57 mRNA-mRNA except trans-targets were involved in the lncRNA-gene interaction networks. Based on the interaction networks, nine DEGs were trans-regulated by differentially abundant lncRNAs and 20 differentially abundant lncRNAs were hypothesized to have important functions in the regulation of broodiness in Muscovy ducks. In this study, a predicted interaction network of differentially abundant lncRNAs and DEGs in Muscovy ducks was constructed for the first time leading to an enhanced understanding of lncRNA and gene interactions regulating broodiness.
Collapse
|
11
|
Yan C, Lv H, Peng Z, Yang D, Shen P, Yu J, Tong C, Wang X. Analysis of miRNA expression changes in bovine endometrial stromal cells treated with lipopolysaccharide. Theriogenology 2021; 167:85-93. [PMID: 33784501 DOI: 10.1016/j.theriogenology.2021.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
After parturition, bovine uterine stromal cells are often exposed to complex bacterial and viral stimuli owing to epithelial cell rupture, resulting in an inflammatory response. In this study, we used an in vitro model to study the response of bovine endometrial stromal cells to inflammatory mediators and the associated regulated microRNAs in response to lipopolysaccharide. Lipopolysaccharide (LPS) is a bacterial wall component in gram-negative bacteria that causes inflammation upon immune recognition, which is used to create in vitro inflammation models. Thus, we used high-throughput RNA sequencing to identify miRNAs that may have an anti-inflammatory role in the LPS-induced inflammatory response. Two groups of bovine uterine cells were treated with phosphate buffer saline (PBS) and LPS, respectively. Compared with the control (PBS) group, the LPS-treated group had 219 differentially expressed miRNAs, of which 113 were upregulated, and 106 were downregulated. Gene ontology enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in several activities, such as transferase activity, small molecule binding, and protein binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the target genes of differential miRNAs were significantly enriched in fluid shear stress and atherosclerosis, MAPK signaling pathway, TNF signaling pathway. By analyzing differentially expressed miRNAs, we found that miR-200c, miR-1247-3p, and let-7b are directly related to the inflammatory response. For instance, miR-200c target genes (MAP3K1, MAP4K3, MAPKAPK5, MAP3K8, MAP3K5) and let-7b target genes (CASP3, IL13, MAPK8, CXCL10) were significantly enriched in the MAPK and IL-17 signaling pathways, respectively. In summary, our research provides insight into the molecular mechanism underlying LPS-induced inflammation in vitro, which may unveil new targets for the treatment of endometritis.
Collapse
Affiliation(s)
- Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Haimiao Lv
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Zhan Peng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China; Wuhu Overseas Students Pioneer Park, Wuhu, 241006, PR China.
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
12
|
Li Q, Du X, Wang L, Shi K, Li Q. TGF-β1 controls porcine granulosa cell states: A miRNA-mRNA network view. Theriogenology 2020; 160:50-60. [PMID: 33181481 DOI: 10.1016/j.theriogenology.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
TGF-β1, an important multi-functional cytokine of the TGF-β signaling pathway, has been reported to be crucial for ovarian granulosa cell (GC) states and female fertility. However, the molecular mechanism underlying TGF-β1 regulation of GC states remains largely unknown. Here, we provide a comprehensive transcriptomic view on TGF-β1 regulation of cell states in porcine GCs. We first confirmed that TGF-β1 can control GC states (apoptosis and proliferation) in pig ovary. RNA-seq showed that 909 differentially expressed genes (DEGs), including 890 DEmRNAs and 19 DEmiRNAs, were identified in TGF-β1-treated porcine GCs. Functional annotation showed that these DEGs were mainly involved in regulating cell states. In addition, multiple hub genes were identified by constructing the protein-protein interaction network, DEmiRNA-DEmRNAs regulatory network, and gene-pathway-function co-expression networks, which were further found to be enriched in FoxO, TGF-β, Wnt, PIK3-Akt, p53 and Ras signaling pathways that play important roles in regulating cell states, cell cycle, proliferation, stress-responses and inflammation. The current research deeply reveals the effects of TGF-β1 on porcine GCs, and also identifies potential therapeutic RNA molecules for inhibiting and rescuing female infertility.
Collapse
Affiliation(s)
- Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingfang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Transcriptome Analysis of the Chicken Follicular Theca Cells with miR-135a-5p Suppressed. G3-GENES GENOMES GENETICS 2020; 10:4071-4081. [PMID: 32900904 PMCID: PMC7642930 DOI: 10.1534/g3.120.401701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a class of transcription regulators, numerous miRNAs have been verified to participate in regulating ovary follicular development in chickens (Gallus gallus). Previously we showed that gga-miR-135a-5p has significant differential expression between high and low-yield chicken ovaries, and the abundance of gga-miR-135a-5p is significantly higher in follicular theca cells than in granulosa cells. However, the exact role of gga-miR-135a-5p in chicken follicular theca cells is unclear. In this study, primary chicken follicular theca cells were isolated and then transfected with gga-miR-135a-5p inhibitor. Transcriptome sequencing was performed in chicken follicular theca cells with or without transfection. Differentially expressed genes (DEGs) were analyzed using bioinformatics. A dual-luciferase reporter assay was used to verify the target relationship between gga-miR-135a-5p and predicted targets within the DEGs. Compared with the normal chicken follicle theca cells, 953 up-regulated and 1060 down-regulated genes were detected in cells with gga-miR-135a-5p inhibited. The up-regulated genes were significantly enriched in Gene Ontology terms and pathways involved in cell proliferation and differentiation. In chicken follicular theca cells, Krüppel-like factor 4 (KLF4), ATPase phospholipid transporting 8A1 (ATP8A1), and Complexin-1 (CPLX1) were significantly up-regulated when the expression of gga-miR-135a-5p was inhibited. In addition, KLF4, ATP8A1, and CPLX1 confirmed as targets of gga-miR-135a-5p by using a dual-luciferase assay in vitro. The results suggest that gga-mir-135a-5p may involve in proliferation and differentiation in chicken ovarian follicular theca cells by targeting KLF4, ATP8A1, and CPLX1.
Collapse
|
14
|
Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep 2020; 10:13557. [PMID: 32782284 PMCID: PMC7419291 DOI: 10.1038/s41598-020-70546-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Season clearly influences oocyte competence in buffalo (Bubalus bubalis); however, changes in the oocyte molecular status in relation to season are poorly understood. This study characterizes the microRNA (miRNA) and transcriptomic profiles of oocytes (OOs) and corresponding follicular cells (FCs) from buffalo ovaries collected in the breeding (BS) and non-breeding (NBS) seasons. In the BS, cleavage and blastocyst rates are significantly higher compared to NBS. Thirteen miRNAs and two mRNAs showed differential expression (DE) in FCs between BS and NBS. DE-miRNAs target gene analysis uncovered pathways associated with transforming growth factor β (TGFβ) and circadian clock photoperiod. Oocytes cluster in function of season for their miRNA content, showing 13 DE-miRNAs between BS and NBS. Between the two seasons, 22 differentially expressed genes were also observed. Gene Ontology (GO) analysis of miRNA target genes and differentially expressed genes (DEGs) in OOs highlights pathways related to triglyceride and sterol biosynthesis and storage. Co-expression analysis of miRNAs and mRNAs revealed a positive correlation between miR-296-3p and genes related to metabolism and hormone regulation. In conclusion, season significantly affects female fertility in buffalo and impacts on oocyte transcriptomic of genes related to folliculogenesis and acquisition of oocyte competence.
Collapse
|
15
|
Zhang Z, Meng Y, Gao F, Xiao Y, Zheng Y, Wang HQ, Gao Y, Jiang H, Yuan B, Zhang JB. TGF-β1-Mediated FDNCR1 Regulates Porcine Preadipocyte Differentiation via the TGF-β Signaling Pathway. Animals (Basel) 2020; 10:ani10081399. [PMID: 32796679 PMCID: PMC7459525 DOI: 10.3390/ani10081399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Fat differentiation affects lipid deposition and is a complex metabolic process. It has been previously reported that multiple transcription factors regulate adipocyte formation. With the in-depth study of epigenetics, in recent years it has been reported that long noncoding RNA (lncRNA) can effectively affect the formation of lipid droplets and thus regulate fat deposition. lncRNA can regulate cell function through a variety of mechanisms, the most studied is the mechanism of action of lncRNA as a miRNA molecular sponge. The purpose of this article is to explore the role of transforming growth factor-beta (TGF-β1) mediated lncRNA in the formation of porcine adipocytes, from the perspective of lncRNA to reveal the effect of TGF-β1 on the differentiation of porcine adipocytes, and provide a new way to improve the quality of pork. Abstract Adipocyte differentiation and lipid metabolism have important regulatory effects on the quality of meat from livestock. A variety of transcription factors regulate preadipocyte differentiation. Several studies have revealed that transforming growth factor-beta (TGF-β1) may play a key role in epithelial–mesenchymal transition (EMT); however, little is known about the effects of TGF-β1 treatment on porcine preadipocytes. To explore the role of TGF-β1 in porcine adipocyte differentiation, porcine preadipocytes were treated with 10 ng/mL TGF-β1, and two libraries were constructed for RNA-seq. We chose an abundant and differentially expressed long noncoding RNA (lncRNA), which we named fat deposition-associated long noncoding RNA1 (FDNCR1), for further study. RT-qPCR was used to detect mRNA levels of genes related to adipocyte differentiation. Triglyceride assay kits were used to detect lipid droplet deposition. TGF-β1 significantly suppressed porcine preadipocyte differentiation. We identified 8158 lncRNAs in total and 39 differentially expressed lncRNAs. After transfection with FDNCR1 siRNA, the mRNA expression of aP2, C/EBPα, and PPARγ and triglyceride levels significantly increased. Transfection with FDNCR1 siRNA significantly decreased protein levels of p-Smad2/Smad2 and p-Smad3/Smad3. These results demonstrate that FDNCR1 suppresses porcine preadipocyte differentiation via the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yu Meng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Fei Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Yue Xiao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Hao-Qi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Yan Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| |
Collapse
|
16
|
Huang K, Shi X, Wang J, Yao Y, Peng Y, Chen X, Li X, Yang G. Upregulated microRNA-106a Promotes Porcine Preadipocyte Proliferation and Differentiation by Targeting Different Genes. Genes (Basel) 2019; 10:genes10100805. [PMID: 31615047 PMCID: PMC6826363 DOI: 10.3390/genes10100805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is one of the main organs for the energy storage and supply of organisms. Adipose deposition and metabolism are controlled by a cascade of transcription factors and epigenetic regulatory mechanisms. Previous studies have also shown that miR-106a plays a considerable role in the development of organisms. The regulatory mechanism of miR-106a on porcine preadipocytes is still not clear. In this study, preadipocytes were isolated from the neck subcutaneous deposits of 3–5-day old Chinese native Guanzhong black pigs using 5-ethynyl-20-deoxyuridine (EdU) staining and a CCK-8 assay to detect the number of proliferous cells and real-time qPCR (RT-qPCR) and western blot analysis to detect gene expression, as well as Oil Red O and BODIPY staining dye lipid droplets and flow cytometry (FCM) to detect cell cycles. We also used the double luciferase method to detect the relative luciferase activities. Upregulated miR-106a increased the number of proliferous cells and enhanced the expression of cell proliferation-related genes in porcine adipocytes. The double luciferase reporter vector confirmed that p21 was a target gene of miR-106a in the cell proliferation phase. miR-106a upregulation increased the number of lipid droplets and the expression of lipogenic genes and directly targeted BMP and activin membrane-bound inhibitor (BAMBI) in the process of differentiation. Our results indicated that miR-106a promotes porcine preadipocyte proliferation and differentiation by targeting p21 and BAMBI.
Collapse
Affiliation(s)
- Kuilong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Jie Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Ying Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Ying Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Xiaochang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| |
Collapse
|
17
|
Tu J, Cheung AHH, Chan CLK, Chan WY. The Role of microRNAs in Ovarian Granulosa Cells in Health and Disease. Front Endocrinol (Lausanne) 2019; 10:174. [PMID: 30949134 PMCID: PMC6437095 DOI: 10.3389/fendo.2019.00174] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 02/02/2023] Open
Abstract
The granulosa cell (GC) is a critical somatic component of the ovary. It is essential for follicle development by supporting the developing oocyte, proliferating and producing sex steroids and disparate growth factors. Knowledge of the GC's function in normal ovarian development and function, and reproductive disorders, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF), is largely acquired through clinical studies and preclinical animal models. Recently, microRNAs have been recognized to play important regulatory roles in GC pathophysiology. Here, we examine the recent findings on the role of miRNAs in the GC, including four related signaling pathways (Transforming growth factor-β pathway, Follicle-stimulating hormones pathway, hormone-related miRNAs, Apoptosis-related pathways) and relevant diseases. Therefore, miRNAs appear to be important regulators of GC function in both physiological and pathological conditions. We suggest that targeting specific microRNAs is a potential therapeutic option for treating ovary-related diseases, such as PCOS, POF, and GCT.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Anhui, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Albert Hoi-Hung Cheung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | | | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Wai-Yee Chan
| |
Collapse
|