1
|
Li A, Wu Q, Yang S, Liu J, Zhao Y, Zhao P, Wang L, Lu W, Huang D, Zhang Y, Que Y. Dissection of genetic architecture for desirable traits in sugarcane by integrated transcriptomics and metabolomics. Int J Biol Macromol 2024; 280:136009. [PMID: 39332555 DOI: 10.1016/j.ijbiomac.2024.136009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Sugarcane is an important sugar and energy crop. Breeding varieties with high yield and sugar, strong stress tolerance, as well as beneficial for mechanized harvesting are the goal of sugarcane breeder. In the present study, transcriptomics and metabolomics were conducted to explore the molecular basis for outstanding performance of five elite varieties GT42, GT44, LC05-136, YZ08-1609, and YZ05-51, along with the cross-parent CP72-1210 compared to ROC22. Transcriptomics revealed a total of 18,353 differentially expressed genes (DEGs) and several regulatory pathways, including carbon fixation, starch and sucrose metabolism, phenylpropanoids biosynthesis, flavonoid biosynthesis, cysteine and methionine metabolism, as well as zeatin biosynthesis. Expression patterns of genes involved in these pathways confirmed their role in determining the agronomic traits. Besides, metabolomics disclosed 175 differentially accumulated metabolites (DAMs), including specific metabolites of amino acids and secondary metabolites. Furthermore, conjoint analysis of transcriptomics and metabolomics highlighted the manipulation of 113 genes led to changed levels of 20 metabolites associated with carbon fixation, sucrose accumulation, phytohormone response and secondary metabolism. Finally, we depicted here a blueprint outlining the genetic basis underlying the desirable traits in sugarcane. This study will accelerate the dissection of the molecular basis for sugarcane traits and provide targets for molecular breeding.
Collapse
Affiliation(s)
- Aomei Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaolin Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Jiayong Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Yong Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Peifang Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Lunwang Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wenxiang Lu
- Liucheng Sugarcane Research Units, Liuzhou 545000, China
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yuebin Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China.
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Hu X, Luo Z, Xu C, Wu Z, Wu C, Ebid MHM, Zan F, Zhao L, Liu X, Liu J. A Comprehensive Analysis of Transcriptomics and Metabolomics Revealed Key Pathways Involved in Saccharum spontaneum Defense against Sporisorium scitamineum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4476-4492. [PMID: 38373255 DOI: 10.1021/acs.jafc.3c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Sugarcane smut, caused by Sporisorium scitamineum, poses a severe threat to sugarcane production. The genetic basis of sugarcane resistance to S. scitamineum remains elusive. A comparative transcriptomic and metabolomic study was conducted on two wild Saccharum species of S. spontaneum with contrast smut resistance. Following infection, the resistant line exhibited greater down-regulation of genes and metabolites compared to the susceptible line, indicating distinct biological processes. Lignan and lignin biosynthesis and SA signal transduction were activated in the resistant line, while flavonoid biosynthesis and auxin signal transduction were enhanced in the susceptible line. TGA2.2 and ARF14 were identified as playing positive and negative roles, respectively, in plant defense. Exogenous auxin application significantly increased the susceptibility of S. spontaneum to S. scitaminum. This study established the significant switching of defense signaling pathways in contrast-resistant S. spontaneum following S. scitamineum infection, offering a hypothetical model and candidate genes for further research into sugarcane smut disease.
Collapse
Affiliation(s)
- Xin Hu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Zhengying Luo
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Chaohua Xu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Zhuandi Wu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Caiwen Wu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Mahmoud H M Ebid
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Fengang Zan
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Liping Zhao
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Xinlong Liu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Jiayong Liu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| |
Collapse
|
3
|
Chen S, Chen Z, Lin X, Zhou X, Yang S, Tan H. Why different sugarcane cultivars show different resistant abilities to smut? : Comparisons of endophytic microbial compositions and metabolic functions in stems of sugarcane cultivars with different abilities to resist smut. BMC PLANT BIOLOGY 2023; 23:427. [PMID: 37710150 PMCID: PMC10500793 DOI: 10.1186/s12870-023-04446-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
To elucidate the mechanisms underlying the resistance to smut of different sugarcane cultivars, endophytic bacterial and fungal compositions, functions and metabolites in the stems of the sugarcane cultivars were analyzed using high-throughput sequencing techniques and nontargeted metabolomics. The results showed that the levels of ethylene, salicylic acid and jasmonic acid in sugarcane varieties that were not sensitive to smut were all higher than those in sensitive sugarcane varieties. Moreover, endophytic fungi, such as Ramichloridium, Alternaria, Sarocladium, Epicoccum, and Exophiala species, could be considered antagonistic to sugarcane smut. Additionally, the highly active arginine and proline metabolism, pentose phosphate pathway, phenylpropanoid biosynthesis, and tyrosine metabolism in sugarcane varieties that were not sensitive to smut indicated that these pathways contribute to resistance to smut. All of the above results suggested that the relatively highly abundant antagonistic microbes and highly active metabolic functions of endophytes in non-smut-sensitive sugarcane cultivars were important for their relatively high resistance to smut.
Collapse
Affiliation(s)
- Siyu Chen
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China
| | - Zhongliang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Guangxi, P.R. China
| | - Xinru Lin
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China
| | - Xinyan Zhou
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, P.R. China.
| | - Hongwei Tan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Guangxi, P.R. China.
| |
Collapse
|
4
|
Wu Q, Li Z, Yang J, Xu F, Fu X, Xu L, You C, Wang D, Su Y, Que Y. Deciphering the Atlas of Post-Translational Modification in Sugarcane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37339007 DOI: 10.1021/acs.jafc.3c01886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
In plants, lysine acetylation (Kac), 2-hydroxyisobutyrylation (Khib), and lysine lactylation (Kla), the three new types of post-translational modification (PTM), play very important roles in growth, development, and resistance to adverse environmental stresses. Herein, we report the first global acetylome, 2-hydroxyisobutyrylome, and lactylome in sugarcane. A total of 8573 Kac, 4637 Khib, and 215 Kla sites across 3903, 1507, and 139 modified proteins were identified. Besides, homology analyses revealed the Kac, Khib, and Kla sites on histones were conserved between sugarcane and rice or poplar. Functional annotations demonstrated that the Kac, Khib, and Kla proteins were mainly involved in energy metabolism. In addition, a number of modified transcription factors and stress-related proteins, which were constitutively expressed in different tissues of sugarcane and induced by drought, cold or Sporisorium scitamineum stress, were identified. Finally, a proposed working mode on how PTM functions in sugarcane was depicted. We thus concluded that PTM should play a role in sugarcane growth, development, and response to biotic and abiotic stresses, but the mechanisms require further investigation. The present study provided the all-new comprehensive profile of proteins Kac, Khib, and Kla and a new perspective to understand the molecular mechanisms of protein PTMs in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenxiang Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueqin Fu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Kaiyuan, Yunnan 661699, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
5
|
Cui G, Bi X, Lu S, Jiang Z, Deng Y. A Genetically Engineered Escherichia coli for Potential Utilization in Fungal Smut Disease Control. Microorganisms 2023; 11:1564. [PMID: 37375066 DOI: 10.3390/microorganisms11061564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sporisorium scitamineum, the basidiomycetous fungus that causes sugarcane smut and leads to severe losses in sugarcane quantity and quality, undergoes sexual mating to form dikaryotic hyphae capable of invading the host cane. Therefore, suppressing dikaryotic hyphae formation would potentially be an effective way to prevent host infection by the smut fungus, and the following disease symptom developments. The phytohormone methyl jasmonate (MeJA) has been shown to induce plant defenses against insects and microbial pathogens. In this study, we will verify that the exogenous addition of MeJA-suppressed dikaryotic hyphae formation in S. scitamineum and Ustilago maydis under in vitro culture conditions, and the maize smut symptom caused by U. maydis, could be effectively suppressed by MeJA in a pot experiment. We constructed an Escherichia coli-expressing plant JMT gene, encoding a jasmonic acid carboxyl methyl transferase that catalyzes conversion from jasmonic acid (JA) to MeJA. By GC-MS, we will confirm that the transformed E. coli, designated as the pJMT strain, was able to produce MeJA in the presence of JA and S-adenosyl-L-methionine (SAM as methyl donor). Furthermore, the pJMT strain was able to suppress S. scitamineum filamentous growth under in vitro culture conditions. It waits to further optimize JMT expression under field conditions in order to utilize the pJMT strain as a biocontrol agent (BCA) of sugarcane smut disease. Overall, our study provides a potentially novel method for controlling crop fungal diseases by boosting phytohormone biosynthesis.
Collapse
Affiliation(s)
- Guobing Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Henry Fork School of Biology and Agriculture, Shaoguan University, Shaoguan 512000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xinping Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Ago-Bioresouces Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Nanning 530004, China
| | - Zide Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Li AM, Liao F, Wang M, Chen ZL, Qin CX, Huang RQ, Verma KK, Li YR, Que YX, Pan YQ, Huang DL. Transcriptomic and Proteomic Landscape of Sugarcane Response to Biotic and Abiotic Stressors. Int J Mol Sci 2023; 24:ijms24108913. [PMID: 37240257 DOI: 10.3390/ijms24108913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ruo-Qi Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Xiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
7
|
Wang Y, Li R, Chen B. Cytogenetic Characterization and Metabolomic Differences of Full-Sib Progenies of Saccharum spp. PLANTS (BASEL, SWITZERLAND) 2023; 12:810. [PMID: 36840158 PMCID: PMC9968213 DOI: 10.3390/plants12040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane smut is a worldwide fungal disease. Disease resistance breeding is the most economical and effective measure to prevent and control sugarcane smut. The cytogenetic characteristics and metabolomic differences of sugarcane F1s are closely related to disease resistance. Zhongzhe 1 and G160 sugarcane from the same parents (ROC25 and Yunzhe89-7) were used; the plants were grown in accordance with the barrel method. When the seedlings had 4-5 leaves, genomic in situ hybridization (GISH) was performed; digoxigenin (DIG)-labeled female parental (ROC25)DNA and biotin-labeled male parental (Yunzhe89-7) DNA were used as probes, and the karyotypes of two hybrids were analyzed. The new sugarcane smut-resistant variety (Zhongzhe 1) and the susceptible variety (G160) derived from the same parent were analyzed via gas chromatography-mass spectrometry technology (GC-MS) to compare the metabolomic differences between them. GISH analysis revealed that the chromosome ploidy number of Zhongzhe 1 sugarcane and G160 sugarcane were 114 and 110, respectively. However, the two contain different numbers of chromosomes from the female (ROC25) and male (Yunzhe89-7) parents. Moreover, 258 significantly changed metabolites were identified in smut-resistant Zhongzhe 1, as compared with the smut-susceptible G160 sugarcane: 56 flavonoids, 52 phenolic acids, 30 lipids, 26 organic acids, 26 amino acids and derivatives, 19 nucleotides and derivatives, 5 alkaloids, 9 terpenoids, and 35 others. Multivariate statistical analysis revealed a distinct difference in metabolic pathways between Zhongzhe 1 sugarcane and G160, and both of these varieties had unique functional metabolites. Differences in chromosome composition may constitute the genetic basis for the difference in resistance to smut disease between Zhongzhe 1 sugarcane and G160 sugarcane, and a high accumulation of flavonoids, lipids, terpenoids and tannins may constitute the basis of resistance to smut disease for the Zhongzhe 1 variety.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Integrated Transcriptome and Metabolome Analysis to Identify Sugarcane Gene Defense against Fall Armyworm ( Spodoptera frugiperda) Herbivory. Int J Mol Sci 2022; 23:ijms232213712. [PMID: 36430189 PMCID: PMC9694286 DOI: 10.3390/ijms232213712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Sugarcane is the most important sugar crop, contributing ≥80% to total sugar production around the world. Spodoptera frugiperda is one of the main pests of sugarcane, potentially causing severe yield and sugar loss. The identification of key defense factors against S. frugiperda herbivory can provide targets for improving sugarcane resistance to insect pests by molecular breeding. In this work, we used one of the main sugarcane pests, S. frugiperda, as the tested insect to attack sugarcane. Integrated transcriptome and metabolomic analyses were performed to explore the changes in gene expression and metabolic processes that occurred in sugarcane leaf after continuous herbivory by S. frugiperda larvae for 72 h. The transcriptome analysis demonstrated that sugarcane pest herbivory enhanced several herbivory-induced responses, including carbohydrate metabolism, secondary metabolites and amino acid metabolism, plant hormone signaling transduction, pathogen responses, and transcription factors. Further metabolome analysis verified the inducement of specific metabolites of amino acids and secondary metabolites by insect herbivory. Finally, association analysis of the transcriptome and metabolome by the Pearson correlation coefficient method brought into focus the target defense genes against insect herbivory in sugarcane. These genes include amidase and lipoxygenase in amino acid metabolism, peroxidase in phenylpropanoid biosynthesis, and pathogenesis-related protein 1 in plant hormone signal transduction. A putative regulatory model was proposed to illustrate the sugarcane defense mechanism against insect attack. This work will accelerate the dissection of the mechanism underlying insect herbivory in sugarcane and provide targets for improving sugarcane variety resistance to insect herbivory by molecular breeding.
Collapse
|
9
|
Agisha V, Ashwin N, Vinodhini R, Nalayeni K, Ramesh Sundar A, Malathi P, Viswanathan R. Transcriptome analysis of sugarcane reveals differential switching of major defense signaling pathways in response to Sporisorium scitamineum isolates with varying virulent attributes. FRONTIERS IN PLANT SCIENCE 2022; 13:969826. [PMID: 36325538 PMCID: PMC9619058 DOI: 10.3389/fpls.2022.969826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
Sugarcane smut caused by the basidiomycetous fungus Sporisorium scitamineum is one of the most devastating diseases that affect sugarcane production, globally. At present, the most practical and effective management strategy for the disease is the cultivation of resistant cultivars. In this connection, a detailed understanding of the host's defense mechanism in response to smut isolates with varying degrees of virulence at the molecular level would facilitate the development of reliable and durable smut-resistant sugarcane varieties. Hence, in this study, a comparative whole transcriptome analysis was performed employing Illumina RNA-seq in the smut susceptible cultivar Co 97009 inoculated with two distinct S. scitamineum isolates, Ss97009 (high-virulent) and SsV89101 (low-virulent) during the early phases of infection (2 dpi and 5 dpi) and at the phase of sporogenesis (whip emergence) (60 dpi). Though the differential gene expression profiling identified significant transcriptional changes during the early phase of infection in response to both the isolates, the number of differentially expressed genes (DEGs) were more abundant at 60 dpi during interaction with the high virulent isolate Ss97009, as compared to the low virulent isolate SsV89101. Functional analysis of these DEGs revealed that a majority of them were associated with hormone signaling and the synthesis of defense-related metabolites, suggesting a complex network of defense mechanisms is being operated in response to specific isolates of the smut pathogen. For instance, up-regulation of hormone-related genes, transcription factors, and flavonoid biosynthesis pathway genes was observed in response to both the isolates in the early phase of interaction. In comparison to early phases of infection, only a few pathogenesis-related proteins were up-regulated at 60 dpi in response to Ss97009, which might have rendered the host susceptible to infection. Strikingly, few other carbohydrate metabolism-associated genes like invertases were up-regulated in Ss97009 inoculated plants during the whip emergence stage, representing a shift from sucrose storage to smut symptoms. Altogether, this study established the major switching of defense signaling pathways in response to S. scitamineum isolates with different virulence attributes and provided novel insights into the molecular mechanisms of sugarcane-smut interaction.
Collapse
Affiliation(s)
| | | | | | | | - Amalraj Ramesh Sundar
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Sugarcane Breeding Institute, Coimbatore, India
| | | | | |
Collapse
|
10
|
Wu Q, Su Y, Pan YB, Xu F, Zou W, Que B, Lin P, Sun T, Grisham MP, Xu L, Que Y. Genetic identification of SNP markers and candidate genes associated with sugarcane smut resistance using BSR-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:1035266. [PMID: 36311133 PMCID: PMC9608552 DOI: 10.3389/fpls.2022.1035266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/01/2023]
Abstract
Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases worldwide. In this study, a cross was made between a smut-resistant variety YT93-159 and a smut-susceptible variety ROC22, and 312 progenies were obtained. Two bulks of progenies were then constructed, one consisted of 27 highly smut resistant progenies and the other 24 smut susceptible progenies. Total RNAs of the progenies of each bulk, were pooled and subject to bulked segregant RNA-sequence analysis (BSR-Seq). A total of 164.44 Gb clean data containing 2,341,449 SNPs and 64,999 genes were obtained, 7,295 of which were differentially expressed genes (DEGs). These DEGs were mainly enriched in stress-related metabolic pathways, including carbon metabolism, phenylalanine metabolism, plant hormone signal transduction, glutathione metabolism, and plant-pathogen interactions. Besides, 45,946 high-quality, credible SNPs, a 1.27 Mb region at Saccharum spontaneum chromosome Chr5B (68,904,827 to 70,172,982), and 129 candidate genes were identified to be associated with smut resistance. Among them, twenty-four genes, either encoding key enzymes involved in signaling pathways or being transcription factors, were found to be very closely associated with stress resistance. RT-qPCR analysis demonstrated that they played a positive role in smut resistance. Finally, a potential molecular mechanism of sugarcane and S. scitamineum interaction is depicted that activations of MAPK cascade signaling, ROS signaling, Ca2+ signaling, and PAL metabolic pathway and initiation of the glyoxalase system jointly promote the resistance to S. scitamineum in sugarcane. This study provides potential SNP markers and candidate gene resources for smut resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Beibei Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- International College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael P. Grisham
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Wu Q, Pan YB, Su Y, Zou W, Xu F, Sun T, Grisham MP, Yang S, Xu L, Que Y. WGCNA Identifies a Comprehensive and Dynamic Gene Co-Expression Network That Associates with Smut Resistance in Sugarcane. Int J Mol Sci 2022; 23:10770. [PMID: 36142681 PMCID: PMC9506403 DOI: 10.3390/ijms231810770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Sugarcane smut is a major fungal disease caused by Sporisorium scitamineum, which seriously reduces the yield and quality of sugarcane. In this study, 36 transcriptome data were collected from two sugarcane genotypes, YT93-159 (resistant) and ROC22 (susceptible) upon S. scitamineum infection. Data analysis revealed 20,273 (12,659 up-regulated and 7614 down-regulated) and 11,897 (7806 up-regulated and 4091 down-regulated) differentially expressed genes (DEGs) in YT93-159 and ROC22, respectively. A co-expression network was then constructed by weighted gene co-expression network analysis (WGCNA), which identified 5010 DEGs in 15 co-expressed gene modules. Four of the 15 modules, namely, Skyblue, Salmon, Darkorange, and Grey60, were significantly associated with smut resistance. The GO and KEGG enrichment analyses indicated that the DEGs involving in these four modules could be enriched in stress-related metabolic pathways, such as MAPK and hormone signal transduction, plant-pathogen interaction, amino acid metabolism, glutathione metabolism, and flavonoid, and phenylpropanoid biosynthesis. In total, 38 hub genes, including six from the Skyblue module, four from the Salmon module, 12 from the Darkorange module, and 16 from the Grey60 module, were screened as candidate hub genes by calculating gene connectivity in the corresponding network. Only 30 hub genes were amplifiable with RT-qPCR, of which 27 were up-regulated upon S. scitamineum infection. The results were consistent with the trend of gene expression in RNA-Seq, suggesting their positive roles in smut resistance. Interestingly, the expression levels of AOX, Cyb5, and LAC were higher in ROC22 than in YT93-159, indicating these three genes may act as negative regulators in response to S. scitamineum infection. This study revealed the transcriptome dynamics in sugarcane challenged by S. scitamineum infection and provided gene targets for smut resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA 70360, USA
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Shaolin Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Li AM, He WZ, Wei JL, Chen ZL, Liao F, Qin CX, Pan YQ, Shang XK, Lakshmanan P, Wang M, Tan HW, Huang DL. Transcriptome Profiling Reveals Genes Related to Sex Determination and Differentiation in Sugarcane Borer (Chilo sacchariphagus Bojer). INSECTS 2022; 13:insects13060500. [PMID: 35735837 PMCID: PMC9225334 DOI: 10.3390/insects13060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Chilo sacchariphagus Bojer is an important sugarcane pest globally. The identification of key genes associated with sex determination and differentiation will provide important basic information for the sterile insect technique control strategy. In this study, the comparative transcriptomic analysis of female and male adults revealed sex-biased gene expression, indicating putative genetic elements of sex determination and differentiation in this species. Abstract Chilo sacchariphagus Bojer is an important sugarcane pest globally. Along with genetic modification strategies, the sterile insect technique (SIT) has gained more attention as an environment-friendly method for pest control. The identification of key genes associated with sex determination and differentiation will provide important basic information for this control strategy. As such, the transcriptome sequencing of female and male adults was conducted in order to understand the sex-biased gene expression and molecular basis of sex determination and differentiation in this species. A total of 60,429 unigenes were obtained; among them, 34,847 genes were annotated. Furthermore, 11,121 deferentially expressed genes (DEGs) were identified, of which 8986 were male-biased and 2135 were female-biased genes. The male-biased genes were enriched for carbon metabolism, peptidase activity and transmembrane transport, while the female-biased genes were enriched for the cell cycle, DNA replication, and the MAPK signaling pathway. In addition, 102 genes related to sex-determination and differentiation were identified, including the protein toll, ejaculatory bulb-specific protein, fruitless, transformer-2, sex-lethal, beta-Catenin, sox, gata4, beta-tubulin, cytosol aminopeptidase, seminal fluid, and wnt4. Furthermore, transcription factors such as myb, bhlh and homeobox were also found to be potentially related to sex determination and differentiation in this species. Our data provide new insights into the genetic elements associated with sex determination and differentiation in Chilo sacchariphagus, and identified potential candidate genes to develop pest-control strategies.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei-Zhong He
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ji-Li Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xian-Kun Shang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hong-Wei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (H.-W.T.); (D.-L.H.)
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (H.-W.T.); (D.-L.H.)
| |
Collapse
|
13
|
Sugarcane Smut: Current Knowledge and the Way Forward for Management. J Fungi (Basel) 2021; 7:jof7121095. [PMID: 34947077 PMCID: PMC8703903 DOI: 10.3390/jof7121095] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Whip smut of sugarcane is the most serious and widely spread disease of sugarcane and causes a significant reduction in cane quantity and quality. The severity of this disease often depends on the pathogen races, environmental conditions, cultivar genotype and the interaction among these three factors. Under optimum climatic conditions, this disease has the potential to cause total crop failure. Resistance screening is an ongoing process due to the variability among smut pathogen isolates. Multiple races and mutation ability of smut pathogen makes the breeding task more complex. A number of studies on various aspects of the disease epidemiology and management have been published. Due to many overlapping characteristics within the species complex, there is a dearth of information on early detection and strategies to control the smut pathogen. Furthermore, there is a need to coordinate these findings to expedite its research and control. In this paper, we summarize the disease etiology, especially disease impact on the qualitative and quantitative parameters of sugarcane. We also gathered research progress on molecular-based detection and available information on genetic variability in S.scitamineum. The research on the set of management options needed to effectively cope with the disease are reviewed herein. The present review is expected to be helpful for the further investigation on smut resistance in sugarcane.
Collapse
|
14
|
Bhuiyan SA, Magarey RC, McNeil MD, Aitken KS. Sugarcane Smut, Caused by Sporisorium scitamineum, a Major Disease of Sugarcane: A Contemporary Review. PHYTOPATHOLOGY 2021; 111:1905-1917. [PMID: 34241540 DOI: 10.1094/phyto-05-21-0221-rvw] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sugarcane smut caused by the fungus Sporisorium scitamineum is one of the major diseases of sugarcane worldwide, causing significant losses in productivity and profitability of this perennial crop. Teliospores of this fungus are airborne, can travel long distances, and remain viable in hot and dry conditions for >6 months. The disease is easily recognized by its long whiplike sorus produced on the apex or side shoots of sugarcane stalks. Each sorus can release ≤100 million teliospores in a day; the spores are small (≤7.5 µ) and light and can survive in harsh environmental conditions. The airborne teliospores are the primary mode of smut spread around the world and across cane-growing regions. The most effective method of managing this disease is via resistant varieties. Because of the complex genomic makeup of sugarcane, selection for resistant traits is difficult in sugarcane breeding programs. In recent times, the application of molecular markers as a rapid tool of discarding susceptible genotypes early in the selection program has been investigated. Large effect resistance loci have been identified and have the potential to be used for marker-assisted selection to increase the frequency of resistant breeding lines in breeding programs. Recent developments in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have contributed to our understanding and provided insights into the mechanism of resistance and susceptibility. This knowledge will further our understanding of smut and its interactions with sugarcane genotypes and aid in the development of durable resistant varieties.
Collapse
Affiliation(s)
- Shamsul A Bhuiyan
- Sugar Research Australia, Woodford, QLD 4514, Australia, and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | | | - Meredith D McNeil
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4072, Australia
| | - Karen S Aitken
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
Shabbir R, Javed T, Afzal I, Sabagh AE, Ali A, Vicente O, Chen P. Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. AGRONOMY 2021; 11:1042. [DOI: 10.3390/agronomy11061042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sugarcane (Saccharum spp.) is one of the most important industrial cash crops, contributing to the world sugar industry and biofuel production. It has been cultivated and improved from prehistoric times through natural selection and conventional breeding and, more recently, using the modern tools of genetic engineering and biotechnology. However, the heterogenicity, complex poly-aneuploid genome and susceptibility of sugarcane to different biotic and abiotic stresses represent impediments that require us to pay greater attention to the improvement of the sugarcane crop. Compared to traditional breeding, recent advances in breeding technologies (molecular marker-assisted breeding, sugarcane transformation, genome-editing and multiple omics technologies) can potentially improve sugarcane, especially against environmental stressors. This article will focus on efficient modern breeding technologies, which provide crucial clues for the engineering of sugarcane cultivars resistant to environmental stresses.
Collapse
|
16
|
A transcriptomic analysis of sugarcane response to Leifsonia xyli subsp. xyli infection. PLoS One 2021; 16:e0245613. [PMID: 33529190 PMCID: PMC7853508 DOI: 10.1371/journal.pone.0245613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Sugarcane ratoon stunting disease (RSD) caused by Leifsonia xyli subsp. xyli (Lxx) is a common destructive disease that occurs around the world. Lxx is an obligate pathogen of sugarcane, and previous studies have reported some physiological responses of RSD-affected sugarcane. However, the molecular understanding of sugarcane response to Lxx infection remains unclear. In the present study, transcriptomes of healthy and Lxx-infected sugarcane stalks and leaves were studied to gain more insights into the gene activity in sugarcane in response to Lxx infection. RNA-Seq analysis of healthy and diseased plants transcriptomes identified 107,750 unigenes. Analysis of these unigenes showed a large number of differentially expressed genes (DEGs) occurring mostly in leaves of infected plants. Sugarcane responds to Lxx infection mainly via alteration of metabolic pathways such as photosynthesis, phytohormone biosynthesis, phytohormone action-mediated regulation, and plant-pathogen interactions. It was also found that cell wall defense pathways and protein phosphorylation/dephosphorylation pathways may play important roles in Lxx pathogeneis. In Lxx-infected plants, significant inhibition in photosynthetic processes through large number of differentially expressed genes involved in energy capture, energy metabolism and chloroplast structure. Also, Lxx infection caused down-regulation of gibberellin response through an increased activity of DELLA and down-regulation of GID1 proteins. This alteration in gibberellic acid response combined with the inhibition of photosynthetic processes may account for the majority of growth retardation occurring in RSD-affected plants. A number of genes associated with plant-pathogen interactions were also differentially expressed in Lxx-infected plants. These include those involved in secondary metabolite biosynthesis, protein phosphorylation/dephosphorylation, cell wall biosynthesis, and phagosomes, implicating an active defense response to Lxx infection. Considering the fact that RSD occurs worldwide and a significant cause of sugarcane productivity, a better understanding of Lxx resistance-related processes may help develop tools and technologies for producing RSD-resistant sugarcane varieties through conventional and/or molecular breeding.
Collapse
|
17
|
Song H, Huang Y, Gu B. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS One 2020; 15:e0227663. [PMID: 33170849 PMCID: PMC7654804 DOI: 10.1371/journal.pone.0227663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Heat is a major abiotic stress that seriously affects watermelon (Citrullus lanatus) production. However, its effects may be mitigated through grafting watermelon to heat tolerant bottle gourd (Lagenaria siceraria) rootstocks. Understanding the genetic basis of heat tolerance and development of reliable DNA markers to indirectly select for the trait are necessary in breeding for new varieties with heat tolerance. The objectives of this study were to investigate the inheritance of heat tolerance and identify molecular markers associated with heat tolerance in bottle gourd. A segregating F2 population was developed from a cross between two heat tolerant and sensitive inbred lines. The population was phenotyped for relative electrical conductivity (REC) upon high temperature treatment which was used as an indicator for heat tolerance. QTL-seq was performed to identify regions associated with heat tolerance. We found that REC-based heat tolerance in this population exhibited recessive inheritance. Seven heat-tolerant quantitative trait loci (qHT1.1, qHT2.1, qHT2.2, qHT5.1, qHT6.1, qHT7.1, and qHT8.1) were identified with qHT2.1 being a promising major-effect QTL. In the qHT2.1 region, we identified three non-synonymous SNPs that were potentially associated with heat tolerance. These SNPs were located in the genes that may play roles in pollen sterility, intracellular transport, and signal recognition. Association of the three SNPs with heat tolerance was verified in segregating F2 populations, which could be candidate markers for marker assisted selection for heat tolerance in bottle gourd. The qHT2.1 region is an important finding that may be used for fine mapping and discovery of novel genes associated with heat tolerance in bottle gourd.
Collapse
Affiliation(s)
- Hui Song
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
- * E-mail:
| | - Yunping Huang
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| | - Binquan Gu
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Su W, Ren Y, Wang D, Su Y, Feng J, Zhang C, Tang H, Xu L, Muhammad K, Que Y. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics 2020; 21:521. [PMID: 32727370 PMCID: PMC7392720 DOI: 10.1186/s12864-020-06929-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenases (ADHs) in plants are encoded by a multigene family. ADHs participate in growth, development, and adaptation in many plant species, but the evolution and function of the ADH gene family in sugarcane is still unclear. RESULTS In the present study, 151 ADH genes from 17 species including 32 ADH genes in Saccharum spontaneum and 6 ADH genes in modern sugarcane cultivar R570 were identified. Phylogenetic analysis demonstrated two groups of ADH genes and suggested that these genes underwent duplication during angiosperm evolution. Whole-genome duplication (WGD)/segmental and dispersed duplications played critical roles in the expansion of ADH family in S. spontaneum and R570, respectively. ScADH3 was cloned and preferentially expressed in response to cold stress. ScADH3 conferred improved cold tolerance in E. coli cells. Ectopic expression showed that ScADH3 can also enhance cold tolerance in transgenic tobacco. The accumulation of reactive oxygen species (ROS) in leaves of transgenic tobacco was significantly lower than in wild-type tobacco. The transcript levels of ROS-related genes in transgenic tobacco increased significantly. ScADH3 seems to affect cold tolerance by regulating the ROS-related genes to maintain the ROS homeostasis. CONCLUSIONS This study depicted the size and composition of the ADH gene family in 17 species, and investigated their evolution pattern. Comparative genomics analysis among the ADH gene families of S. bicolor, R570 and S. spontaneum revealed their close evolutionary relationship. Functional analysis suggested that ScADH3, which maintained the steady state of ROS by regulating ROS-related genes, was related to cold tolerance. These findings will facilitate research on evolutionary and functional aspects of the ADH genes in sugarcane, especially for the understanding of ScADH3 under cold stress.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jingfang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
19
|
Chu N, Zhou JR, Fu HY, Huang MT, Zhang HL, Gao SJ. Global Gene Responses of Resistant and Susceptible Sugarcane Cultivars to Acidovorax avenae subsp. avenae Identified Using Comparative Transcriptome Analysis. Microorganisms 2019; 8:microorganisms8010010. [PMID: 31861562 PMCID: PMC7022508 DOI: 10.3390/microorganisms8010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
Red stripe disease in sugarcane caused by Acidovorax avenae subsp. avenae (Aaa) is related to serious global losses in yield. However, the underlying molecular mechanisms associated with responses of sugarcane plants to infection by this pathogen remain largely unknown. Here, we used Illumina RNA-sequencing (RNA-seq) to perform large-scale transcriptome sequencing of two sugarcane cultivars to contrast gene expression patterns of plants between Aaa and mock inoculations, and identify key genes and pathways involved in sugarcane defense responses to Aaa infection. At 0–72 hours post-inoculation (hpi) of the red stripe disease-resistant cultivar ROC22, a total of 18,689 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples. Of these, 8498 and 10,196 genes were up- and downregulated, respectively. In MT11-610, which is susceptible to red stripe disease, 15,782 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples and 8807 and 6984 genes were up- and downregulated, respectively. The genes that were differentially expressed following Aaa inoculation were mainly involved in photosynthesis and carbon metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant–pathogen interaction pathways. Further, qRT-PCR and RNA-seq used for additional validation of 12 differentially expressed genes (DEGs) showed that eight genes in particular were highly expressed in ROC22. These eight genes participated in the biosynthesis of lignin and coumarin, as well as signal transduction by salicylic acid, jasmonic acid, ethylene, and mitogen-activated protein kinase (MAPK), suggesting that they play essential roles in sugarcane resistance to Aaa. Collectively, our results characterized the sugarcane transcriptome during early infection with Aaa, thereby providing insights into the molecular mechanisms responsible for bacterial tolerance.
Collapse
|
20
|
Ntambo MS, Meng JY, Rott PC, Henry RJ, Zhang HL, Gao SJ. Comparative Transcriptome Profiling of Resistant and Susceptible Sugarcane Cultivars in Response to Infection by Xanthomonas albilineans. Int J Mol Sci 2019; 20:ijms20246138. [PMID: 31817492 PMCID: PMC6940782 DOI: 10.3390/ijms20246138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrids) is a major source of sugar and renewable bioenergy crop worldwide and suffers serious yield losses due to many pathogen infections. Leaf scald caused by Xanthomonas albilineans is a major bacterial disease of sugarcane in most sugarcane-planting countries. The molecular mechanisms of resistance to leaf scald in this plant are, however, still unclear. We performed a comparative transcriptome analysis between resistant (LCP 85-384) and susceptible (ROC20) sugarcane cultivars infected by X. albilineans using the RNA-seq platform. 24 cDNA libraries were generated with RNA isolated at four time points (0, 24, 48, and 72 h post inoculation) from the two cultivars with three biological replicates. A total of 105,783 differentially expressed genes (DEGs) were identified in both cultivars and the most upregulated and downregulated DEGs were annotated for the processes of the metabolic and single-organism categories, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the 7612 DEGs showed that plant-pathogen interaction, spliceosome, glutathione metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction contributed to sugarcane's response to X. albilineans infection. Subsequently, relative expression levels of ten DEGs determined by quantitative reverse transcription-PCR (qRT-PCR), in addition to RNA-Seq data, indicated that different plant hormone (auxin and ethylene) signal transduction pathways play essential roles in sugarcane infected by X. albilineans. In conclusion, our results provide, for the first time, valuable information regarding the transcriptome changes in sugarcane in response to infection by X. albilineans, which contribute to the understanding of the molecular mechanisms underlying the interactions between sugarcane and this pathogen and provide important clues for further characterization of leaf scald resistance in sugarcane.
Collapse
Affiliation(s)
- Mbuya Sylvain Ntambo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - Jian-Yu Meng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - Philippe C. Rott
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France;
| | - Robert J. Henry
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
- Correspondence:
| |
Collapse
|
21
|
Rody HVS, Bombardelli RGH, Creste S, Camargo LEA, Van Sluys MA, Monteiro-Vitorello CB. Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype. BMC Genomics 2019; 20:809. [PMID: 31694536 PMCID: PMC6836459 DOI: 10.1186/s12864-019-6207-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Resistance genes composing the two-layer immune system of plants are thought as important markers for breeding pathogen-resistant crops. Many have been the attempts to establish relationships between the genomic content of Resistance Gene Analogs (RGAs) of modern sugarcane cultivars to its degrees of resistance to diseases such as smut. However, due to the highly polyploid and heterozygous nature of sugarcane genome, large scale RGA predictions is challenging. RESULTS We predicted, searched for orthologs, and investigated the genomic features of RGAs within a recently released sugarcane elite cultivar genome, alongside the genomes of sorghum, one sugarcane ancestor (Saccharum spontaneum), and a collection of de novo transcripts generated for six modern cultivars. In addition, transcriptomes from two sugarcane genotypes were obtained to investigate the roles of RGAs differentially expressed (RGADE) in their distinct degrees of resistance to smut. Sugarcane references lack RGAs from the TNL class (Toll-Interleukin receptor (TIR) domain associated to nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains) and harbor elevated content of membrane-associated RGAs. Up to 39% of RGAs were organized in clusters, and 40% of those clusters shared synteny. Basically, 79% of predicted NBS-encoding genes are located in a few chromosomes. S. spontaneum chromosome 5 harbors most RGADE orthologs responsive to smut in modern sugarcane. Resistant sugarcane had an increased number of RGAs differentially expressed from both classes of RLK (receptor-like kinase) and RLP (receptor-like protein) as compared to the smut-susceptible. Tandem duplications have largely contributed to the expansion of both RGA clusters and the predicted clades of RGADEs. CONCLUSIONS Most of smut-responsive RGAs in modern sugarcane were potentially originated in chromosome 5 of the ancestral S. spontaneum genotype. Smut resistant and susceptible genotypes of sugarcane have a distinct pattern of RGADE. TM-LRR (transmembrane domains followed by LRR) family was the most responsive to the early moment of pathogen infection in the resistant genotype, suggesting the relevance of an innate immune system. This work can help to outline strategies for further understanding of allele and paralog expression of RGAs in sugarcane, and the results should help to develop a more applied procedure for the selection of resistant plants in sugarcane.
Collapse
Affiliation(s)
- Hugo V S Rody
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Renato G H Bombardelli
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Silvana Creste
- Centro de Cana, IAC-Apta, Ribeirão Preto, Av. Pádua Dias n11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Luís E A Camargo
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânia, Universidade de São Paulo, Instituto de Biociências, São Paulo, Brazil
| | - Claudia B Monteiro-Vitorello
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
22
|
Ali A, Khan M, Sharif R, Mujtaba M, Gao SJ. Sugarcane Omics: An Update on the Current Status of Research and Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2019; 8:E344. [PMID: 31547331 PMCID: PMC6784093 DOI: 10.3390/plants8090344] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Sugarcane is an important crop from Poaceae family, contributing about 80% of the total world's sucrose with an annual value of around US$150 billion. In addition, sugarcane is utilized as a raw material for the production of bioethanol, which is an alternate source of renewable energy. Moving towards sugarcane omics, a remarkable success has been achieved in gene transfer from a wide variety of plant and non-plant sources to sugarcane, with the accessibility of efficient transformation systems, selectable marker genes, and genetic engineering gears. Genetic engineering techniques make possible to clone and characterize useful genes and also to improve commercially important traits in elite sugarcane clones that subsequently lead to the development of an ideal cultivar. Sugarcane is a complex polyploidy crop, and hence no single technique has been found to be the best for the confirmation of polygenic and phenotypic characteristics. To better understand the application of basic omics in sugarcane regarding agronomic characters and industrial quality traits as well as responses to diverse biotic and abiotic stresses, it is important to explore the physiology, genome structure, functional integrity, and collinearity of sugarcane with other more or less similar crops/plants. Genetic improvements in this crop are hampered by its complex genome, low fertility ratio, longer production cycle, and susceptibility to several biotic and abiotic stresses. Biotechnology interventions are expected to pave the way for addressing these obstacles and improving sugarcane crop. Thus, this review article highlights up to date information with respect to how advanced data of omics (genomics, transcriptomic, proteomics and metabolomics) can be employed to improve sugarcane crops.
Collapse
Affiliation(s)
- Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mehran Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Punjab 32200, Pakistan
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|