1
|
Jiao B, Peng Q, Wu B, Liu S, Zhou J, Yuan B, Lin H, Xi D. The miR172/TOE3 module regulates resistance to tobacco mosaic virus in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2672-2686. [PMID: 39040005 DOI: 10.1111/tpj.16941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
The outcome of certain plant-virus interaction is symptom recovery, which is accompanied with the emergence of asymptomatic tissues in which the virus accumulation decreased dramatically. This phenomenon shows the potential to reveal critical molecular factors for controlling viral disease. MicroRNAs act as master regulators in plant growth, development, and immunity. However, the mechanism by which miRNA participates in regulating symptom recovery remains largely unknown. Here, we reported that miR172 was scavenged in the recovered tissue of tobacco mosaic virus (TMV)-infected Nicotiana tabacum plants. Overexpression of miR172 promoted TMV infection, whereas silencing of miR172 inhibited TMV infection. Then, TARGET OF EAT3 (TOE3), an APETALA2 transcription factor, was identified as a downstream target of miR172. Overexpression of NtTOE3 significantly improved plant resistance to TMV infection, while knockout of NtTOE3 facilitated virus infection. Furthermore, transcriptome analysis indicated that TOE3 promoted the expression of defense-related genes, such as KL1 and MLP43. Overexpression of these genes conferred resistance of plant against TMV infection. Importantly, results of dual-luciferase assay, chromatin immunoprecipitation-quantitative PCR, and electrophoretic mobility shift assay proved that TOE3 activated the transcription of KL1 and MLP43 by binding their promoters. Moreover, overexpression of rTOE3 (the miR172-resistant form of TOE3) significantly reduced TMV accumulation compared to the overexpression of TOE3 (the normal form of TOE3) in miR172 overexpressing Nicotiana benthamiana plants. Taken together, our study reveals the pivotal role of miR172/TOE3 module in regulating plant immunity and in the establishment of recovery in virus-infected tobacco plants, elucidating a regulatory mechanism integrating plant growth, development, and immune response.
Collapse
Affiliation(s)
- Bolei Jiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Qiding Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Baijun Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Sucen Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jingya Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bowen Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
2
|
Bhat A, Mishra S, Kaul S, Dhar MK. Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L. PROTOPLASMA 2024; 261:749-769. [PMID: 38340171 DOI: 10.1007/s00709-024-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Crocus sativus is a valuable plant due to the presence of apocarotenoids in its stigma. Considerable work has been done in the past to understand the apocarotenoid biosynthetic pathway in saffron. However, the reports on understanding the regulation of flowering at the post-transcriptional level are meagre. The study aimed to discover the candidate miRNAs, target genes, transcription factors (TFs), and apocarotenoid biosynthetic pathway genes associated with the regulation and transition of flowering in C. sativus. In the present investigation, miRNA profiling was performed in flowering and non-flowering corms of saffron, along with expression analysis of apocarotenoid genes and transcription factors involved in the synthesis of secondary metabolites. Significant modulation in the expression of miR156, miR159, miR166, miR172, miR395, miR396, miR399, and miR408 gene families was observed. We obtained 36 known miRNAs (26 in flowering and 10 in non-flowering) and 64 novel miRNAs (40 in flowering and 24 in non-flowering) unique to specific tissues in our analysis. TFs, including CsMADS and CsMYb, showed significant modulation in expression in flowering tissue, followed by CsHB. Additionally, the miRNAs were predicted to be involved in carbohydrate metabolism, phytohormone signalling, regulation of flower development, and response to stress, cold, and defence. The comprehensive study has enhanced our understanding of the regulatory machinery comprising factors like phytohormones, abiotic stress, apocarotenoid genes, transcription factors, and miRNAs responsible for the synthesis of apocarotenoids and developmental processes during and after flowering.
Collapse
Affiliation(s)
- Archana Bhat
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Sonal Mishra
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manoj Kumar Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Sala-Cholewa K, Tomasiak A, Nowak K, Piński A, Betekhtin A. DNA methylation analysis of floral parts revealed dynamic changes during the development of homostylous Fagopyrum tataricum and heterostylous F. esculentum flowers. BMC PLANT BIOLOGY 2024; 24:448. [PMID: 38783206 PMCID: PMC11112930 DOI: 10.1186/s12870-024-05162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Proper flower development is essential for plant reproduction, a crucial aspect of the plant life cycle. This process involves precisely coordinating transcription factors, enzymes, and epigenetic modifications. DNA methylation, a ubiquitous and heritable epigenetic mechanism, is pivotal in regulating gene expression and shaping chromatin structure. Fagopyrum esculentum demonstrates anti-hypertensive, anti-diabetic, anti-inflammatory, cardio-protective, hepato-protective, and neuroprotective properties. However, the heteromorphic heterostyly observed in F. esculentum poses a significant challenge in breeding efforts. F. tataricum has better resistance to high altitudes and harsh weather conditions such as drought, frost, UV-B radiation damage, and pests. Moreover, F. tataricum contains significantly higher levels of rutin and other phenolics, more flavonoids, and a balanced amino acid profile compared to common buckwheat, being recognised as functional food, rendering it an excellent candidate for functional food applications. RESULTS This study aimed to compare the DNA methylation profiles between the Pin and Thrum flower components of F. esculentum, with those of self-fertile species of F. tataricum, to understand the potential role of this epigenetic mechanism in Fagopyrum floral development. Notably, F. tataricum flowers are smaller than those of F. esculentum (Pin and Thrum morphs). The decline in DNA methylation levels in the developed open flower components, such as petals, stigmas and ovules, was consistent across both species, except for the ovule in the Thrum morph. Conversely, Pin and Tartary ovules exhibited a minor decrease in DNA methylation levels. The highest DNA methylation level was observed in Pin stigma from closed flowers, and the most significant decrease was in Pin stigma from open flowers. In opposition, the nectaries of open flowers exhibited higher levels of DNA methylation than those of closed flowers. The decrease in DNA methylation might correspond with the downregulation of genes encoding methyltransferases. CONCLUSIONS Reduced overall DNA methylation and the expression of genes associated with these epigenetic markers in fully opened flowers of both species may indicate that demethylation is necessary to activate the expression of genes involved in floral development.
Collapse
Affiliation(s)
- Katarzyna Sala-Cholewa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| | - Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| |
Collapse
|
4
|
Arora S, Singh AK, Chaudhary B. Coordination of floral and fiber development in cotton (Gossypium) by hormone- and flavonoid-signalling associated regulatory miRNAs. PLANT MOLECULAR BIOLOGY 2023; 112:1-18. [PMID: 37067671 DOI: 10.1007/s11103-023-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/16/2023] [Indexed: 05/09/2023]
Abstract
Various plant development activities and stress responses are tightly regulated by various microRNAs (miRNA) and their target genes, or transcription factors in a spatiotemporal manner. Here, to exemplify how flowering-associated regulatory miRNAs synchronize their expression dynamics during floral and fiber development in cotton, constitutive expression diminution transgenic lines of auxin-signaling regulatory Gh-miR167 (35S-MIM167) were developed through target mimicry approach. 'Moderate' (58% to 80%)- and 'high' (> 80%)-Gh-miR167 diminution mimic lines showed dosage-dependent developmental deformities in anther development, pollen maturation, and fruit (= boll) formation. Cross pollination of 'moderate' 35S-MIM167 mimic lines with wild type (WT) plant partially restored boll formation and emergence of fiber initials on the ovule surface. Gh-miR167 diminution favored organ-specific transcription biases in miR159, miR166 as well as miR160, miR164, and miR172 along with their target genes during anther and petal development, respectively. Similarly, accumulative effect of percent Gh-miR167 diminution, cross regulation of its target ARF6/8 genes, and temporal mis-expression of hormone signaling- and flavonoid biosynthesis-associated regulatory miRNAs at early fiber initiation stage caused irregular fiber formation. Spatial and temporal transcription proportions of regulatory miRNAs were also found crucial for the execution of hormone- and flavonoid-dependent progression of floral and fiber development. These observations discover how assorted regulatory genetic circuits get organized in response to Gh-miR167 diminution and converge upon ensuing episodes of floral and fiber development in cotton.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India
| | - Amarjeet Kumar Singh
- Center for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India.
| |
Collapse
|
5
|
Potato Stu-miR398b-3p Negatively Regulates Cu/Zn-SOD Response to Drought Tolerance. Int J Mol Sci 2023; 24:ijms24032525. [PMID: 36768844 PMCID: PMC9916884 DOI: 10.3390/ijms24032525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
One of the main impacts of drought stress on plants is an excessive buildup of reactive oxygen species (ROS). A large number of ·OH, highly toxic to cells, will be produced if too much ROS is not quickly cleared. At the heart of antioxidant enzymes is superoxide dismutase (SOD), which is the first antioxidant enzyme to function in the active oxygen scavenging system. To shield cells from oxidative injury, SOD dismutation superoxide anion free radicals generate hydrogen peroxide and molecule oxygen. Cu/Zn SOD is a kind of SOD antioxidant enzyme that is mostly found in higher plants' cytoplasm and chloroplasts. Other studies have demonstrated the significance of the miR398s family of miRNAs in the response of plants to environmental stress. The cleavage location of potato stu-miR398b-3p on Cu/Zn SOD mRNA was verified using RLM-5'RACE. Using the potato variety 'Desiree', the stu-miR398b-3p overexpression mutant was created, and transgenic lines were raised. SOD activity in transgenic lines was discovered to be decreased during drought stress, although other antioxidant enzyme activities were mostly unaltered. Transgenic plants will wilt more quickly than wild-type plants without irrigation. Additionally, this demonstrates that the response of Cu/Zn SOD to drought stress is adversely regulated by potato stu-miR398b-3p.
Collapse
|
6
|
Comparative phylogenomic analysis of 5’is-regulatory elements (CREs) of miR160 gene family in diploid and allopolyploid cotton (Gossypium) species. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
7
|
Arora S, Chaudhary B. Global expression dynamics and miRNA evolution profile govern floral/fiber architecture in the modern cotton (Gossypium). PLANTA 2021; 254:62. [PMID: 34459999 DOI: 10.1007/s00425-021-03711-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 05/15/2023]
Abstract
Majority of differentially expressed miRNAs with functional attributes have been recruited independently and parallelly during allopolyploidy followed by the millennia of human selection of both domesticated G. hirsutum and G. barbadense. The genus Gossypium is a marvelous evolutionary model for studying allopolyploidy and morpho-evolution of long-spinnable fibers from the ancestral wild-fuzz. Many genes, transcription factors, and notably, the regulatory miRNAs essentially govern such remarkable modern fiber phenotypes. To comprehend the impact of allopolyploidy on the evolutionary selection of transcriptional dynamicity of key miRNAs, comparative transcriptome profiling of vegetative and fiber tissues of domesticated diploid G. arboreum (A2) and allopolyploid cotton species G. hirsutum (AD1), and G. barbadense (AD2) identified > 300 differentially expressed miRNAs (DEmiRs) within or between corresponding tissues of A2, AD1 and AD2 species. Up to 49% and 32% DEmiRs were up- and down-regulated at fiber initiation stage of AD1 and AD2 species, respectively, whereas 50% and 18% DEmiRs were up- and down-regulated at fiber elongation stage of both the allopolyploid species. Interestingly, A-subgenome-specific DEmiRs exhibit expression dominance in the allopolyploid genetic backgrounds. Comparative spatio-temporal expression analyses of AD1 and AD2 species discovered that a majority of DEmiRs were recruited independently under millennia of human selection during domestication. Functional annotations of these DEmiRs revealed selection of associated molecular functions such as hormone-signaling, calcium-signaling and reactive oxygen species (ROS) signaling during fiber initiation and elongation. To validate the functional attributes of annotated DEmiRs, we demonstrated for the first time that the target-mimicry-based constitutive diminution of auxin-signaling associated miR167 directly affected the differentiation of floral and fiber tissues of transgenic cotton. These results strongly suggested that the evolutionarily favored DEmiRs including miR167 were involved in the transcriptional regulation of numerous genes during cotton evolution for enhanced fiber-associated agronomic traits.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
8
|
Ma J, Zhao P, Liu S, Yang Q, Guo H. The Control of Developmental Phase Transitions by microRNAs and Their Targets in Seed Plants. Int J Mol Sci 2020; 21:E1971. [PMID: 32183075 PMCID: PMC7139601 DOI: 10.3390/ijms21061971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Seed plants usually undergo various developmental phase transitions throughout their lifespan, mainly including juvenile-to-adult and vegetative-to-reproductive transitions, as well as developmental transitions within organ/tissue formation. MicroRNAs (miRNAs), as a class of small endogenous non-coding RNAs, are involved in the developmental phase transitions in plants by negatively regulating the expression of their target genes at the post-transcriptional level. In recent years, cumulative evidence has revealed that five miRNAs, miR156, miR159, miR166, miR172, and miR396, are key regulators of developmental phase transitions in plants. In this review, the advanced progress of the five miRNAs and their targets in regulating plant developmental transitions, especially in storage organ formation, are summarized and discussed, combining our own findings with the literature. In general, the functions of the five miRNAs and their targets are relatively conserved, but their functional divergences also emerge to some extent. In addition, potential research directions of miRNAs in regulating plant developmental phase transitions are prospected.
Collapse
Affiliation(s)
- Jingyi Ma
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Pan Zhao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Shibiao Liu
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Qi Yang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Huihong Guo
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| |
Collapse
|
9
|
Cao X, Zhang K, Yan W, Xia Z, He S, Xu X, Ye Y, Wei Z, Liu S. Calcium ion assisted fluorescence determination of microRNA-167 using carbon dots-labeled probe DNA and polydopamine-coated Fe 3O 4 nanoparticles. Mikrochim Acta 2020; 187:212. [PMID: 32157454 DOI: 10.1007/s00604-020-4209-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
A selective and sensitive fluorescence biosensor is described for determination of microRNA-167 using fluorescent resonant energy transfer (FRET) strategy. The FRET system comprises carbon dots (CDs, donor) labeled with probe DNA (pDNA) and polydopamine (PDA)-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs, acceptor). The CDs-pDNA can be absorbed onto the surface of Fe3O4@PDA NPs because of the strong π interaction between pDNA and PDA. With the enhanced adsorption ability of Fe3O4@PDA NPs by Ca2+, the fluorescence intensity of CDs at 445 nm (excitation at 360 nm) is quenched. In presence of microRNA-167, the hybridized complex of CDs-pDNA-microRNA-167 will be released from the surface of Fe3O4@PDA NPs due to the weak π interaction of the complex and PDA. This results in the fluorescence recovery of CDs. By application of twice-magnetic separation, the biosensor shows a wide linear range of 0.5-100 nM to microRNA-167 with a 76 pM detection limit. The method was applied to the determination of microRNA-167 in samples of total microRNA extractions from A. thaliana seedlings, and the recoveries ranged from 96.4 to 98.3%.
Collapse
Affiliation(s)
- Xiaodong Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kairui Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wuwen Yan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zihao Xia
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shudong He
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuan Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yongkang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|