1
|
Balasubramanian V, Saravanan R, Balamurugan SSS, Rajendran S, Joseph LD, Dev B, Srinivasan B, Balunathan N, Shanmugasundaram G, Gopisetty G, Ganesan K, Rayala SK, Venkatraman G. Genetic alteration of mRNA editing enzyme APOBEC3B in the pathogenesis of ovarian endometriosis. Reprod Biomed Online 2024; 49:104111. [PMID: 39197402 DOI: 10.1016/j.rbmo.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 09/01/2024]
Abstract
RESEARCH QUESTION What are the specific genetic alterations and associated network in endometriotic cells responsible for the disease pathogenesis? DESIGN Case control experimental study involving 45 women with endometriosis who underwent laparoscopic surgery (case) and 45 normal samples from women undergoing total abdominal hysterectomy (control). The endometrial samples were subjected to whole exome sequencing (WES) of endometriotic tissue and copy number variation analysis. Validation of gene hits were obtained from WES using polymerase chain reaction techniques, immunological techniques, in-silico tools and transgenic cell line models. RESULTS Germline heterozygous deletion of mRNA editing enzyme subunit APOBEC3B was identified in about 96% of endometriosis samples. The presence of germline deletion was confirmed with blood, endometrium and normal ovary samples obtained from the same patient. APOBEC3B deletions resulted in a hybrid protein that activates A1CF. APOBEC3B deletion can be a major cause of changes in the endometriotic microenvironment, and contributes to the pathogenesis and manifestation of the disease. The effect of APOBEC3B deletion was proved by in-vitro experiments in a cell line model, which displayed endometriosis-like characteristics. APOBEC3B germline deletion plays a major role in the pathogenesis of endometriosis, which is evident by the activation of A1CF, an increase in epithelial to mesenchymal transition, cellular proliferation, inflammation markers and a decrease in apoptosis markers. CONCLUSION The deleterious effects caused by APOBEC3B deletion in endometriosis were identified and confirmed. These results might provide a base for identifying the complete pathogenetic mechanism of endometriosis, thereby moving a step closer to better diagnosis and treatment options.
Collapse
Affiliation(s)
- Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Srikanth Swamy Swaroop Balamurugan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Bhawna Dev
- Department of Radiology, Sri Ramachandra Medical College Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Bhuvana Srinivasan
- Department of Obstetrics and Gynecology, Sri Ramachandra Medical College Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600095, India
| | - Nandhini Balunathan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | | | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (W.I.A), Adayar, Chennai, 600036, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India..
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences & Technology, Vellore Institute of Technology Vellore, Vellore, 632014, India..
| |
Collapse
|
2
|
Wang L, Cheng Q. APOBEC-1 Complementation Factor: From RNA Binding to Cancer. Cancer Control 2024; 31:10732748241284952. [PMID: 39334524 PMCID: PMC11439182 DOI: 10.1177/10732748241284952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND APOBEC-1 complementation factor (A1CF) and Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-1 (APOBEC-1) constitute the minimal proteins necessary for the editing of apolipoprotein B (apoB) mRNA in vitro. Unlike APOBEC-1 and apoB mRNA, the ubiquitous expression of A1CF in human tissues suggests its unique biological significance, with various factors such as protein kinase C, thyroid hormones, and insulin regulating the activity and expression of A1CF. Nevertheless, few studies have provided an overview of this topic. OBJECTIVE We conducted a literature review to describe the molecular mechanisms of A1CF and its relevance to human diseases. METHOD In the PubMed database, we used the keywords 'A1CF' and 'APOBEC-1 complementation factor' to collect peer-reviewed articles published in English from 2000 to 2023. Two authors independently reviewed the articles and reached the consensus. RESULT After reviewing 127 articles, a total of 61 articles that met the inclusion criteria were included in the present review. Studies revealed that A1CF is involved in epigenetic regulation of reproductive cells affecting embryonic development, and that it is closely associated with the occurrence of gout due to its editing properties on apoB. A1CF can also affect the process of epithelial-mesenchymal transition in renal tubular epithelial cells and promote liver regeneration by controlling the stability of IL-6 mRNA, but no influence on cardiac function was found. Furthermore, increasing evidence suggests that A1CF may promote the occurrence and development of breast cancer, lung cancer, renal cell carcinoma, hepatocellular carcinoma, endometrial cancer, and glioma. CONCLUSION This review clarifies the association between A1CF and other complementary factors and their impact on the development of human diseases, aiming to provide guidance for further research on A1CF, which can help treat human diseases and promote health.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Thyroid Surgery, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Cheng
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev 2023; 42:1071-1112. [PMID: 37369946 PMCID: PMC10713773 DOI: 10.1007/s10555-023-10120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
Collapse
Affiliation(s)
- Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Li Z, Liu Y, Ma T, Lv C, Li Y, Duan H, Zhao X, Wang J, Zhang Y. Smart-seq2 Technology Reveals a Novel Mechanism That Zearalenone Inhibits the In Vitro Maturation of Ovine Oocytes by Influencing TNFAIP6 Expression. Toxins (Basel) 2023; 15:617. [PMID: 37888648 PMCID: PMC10611292 DOI: 10.3390/toxins15100617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic fungal toxin widely present in forage, food, and their ingredients, poses a serious threat to animal and human reproductive health. ZEN also threatens ovine, a major source of human food and breeding stock. However, the mechanisms underlying the impact of ZEN on the in vitro maturation (IVM) of ovine oocytes remain unclear. This study aimed to elucidate these mechanisms using the Smart-seq2 technology. A total of 146 differentially expressed genes were obtained, using Smart-seq2, from sheep oocytes cultured in vitro after ZEN treatment. ZEN treatment inhibited RUNX2 and SPP1 expression in the PI3K signaling pathway, leading to the downregulation of THBS1 and ultimately the downregulation of TNFAIP6; ZEN can also decrease TNFAIP6 by reducing PTPRC and ITGAM. Both inhibit in vitro maturation of ovine oocytes and proliferation of cumulus cells by downregulating TNFAIP6. These findings provide data and a theoretical basis for elucidating ZEN's toxicity mechanisms, screening therapeutic drugs, and reducing ZEN-related losses in the ovine industry.
Collapse
Affiliation(s)
- Zongshuai Li
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yali Liu
- Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Tian Ma
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Chen Lv
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yina Li
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Hongwei Duan
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Jianlin Wang
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| |
Collapse
|
5
|
Huang Y, Xiao L, Daba MY, Xu D, Wang Y, Li L, Li Q, Liu B, Qin W, Zhang H, Yuan X. Characterization of molecular subtypes based on chromatin regulators and identification of the role of NPAS2 in lung adenocarcinoma. Clin Epigenetics 2023; 15:72. [PMID: 37120564 PMCID: PMC10149025 DOI: 10.1186/s13148-023-01486-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Chromatin regulators (CRs) are critical epigenetic modifiers and have been reported to play critical roles during the progression of various tumors, but their role in lung adenocarcinoma (LUAD) has not been comprehensively studied. METHODS Differential expression and univariate Cox regression analyses were conducted to identify the prognostic CRs. Consensus clustering was applied to classify the subtypes of LUAD based on prognostic CRs. LASSO-multivariate Cox regression method was used for construction of a prognostic signature and development of chromatin regulator-related gene index (CRGI). The capacity of CRGI to distinguish survival was evaluated via Kaplan-Meier method in multiple datasets. Relationship between CRGI and tumor microenvironment (TME) was evaluated. Additionally, clinical variables and CRGI were incorporated to create a nomogram. The role of the prognostic gene NPAS2 in LUAD was elucidated via clinical samples validation and a series of in vitro and in vivo experiments. RESULTS Two subtypes of LUAD were classified based on 46 prognostic CRs via consensus clustering which had significantly different survival and TME. A prognostic signature consisting of six CRs (MOCS, PBK, CBX3, A1CF, NPAS2, and CTCFL) was developed and proved to be an effective survival predictor in multiple independent datasets. The prognostic signature was also demonstrated to be an indicator of TME and sensitivity to immunotherapy and chemotherapy. The nomogram was suggested to be a simple tool that can predict survival accurately. Clinical samples show that NPAS2 is highly expressed in LUAD tissues, and in vitro and in vivo experiments demonstrated that inhibition of NPAS2 impeded malignant progression of LUAD cells. CONCLUSIONS Our study comprehensively unveiled the functions of CRs in LUAD, developed a classifier to predict survival and response to treatments, and suggested that NPAS2 promoted LUAD progression for the first time.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Motuma Yigezu Daba
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Sun C, Yang X, Jin Z, Gao Z. Combination of mTOR inhibitor PP242 and AMPK activator metformin exerts enhanced inhibitory effects on colorectal carcinoma cells in vitro by blocking multiple kinase pathways. J Chemother 2022:1-11. [PMID: 35731713 DOI: 10.1080/1120009x.2022.2091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The second-generation mammalian target of rapamycin (mTOR) inhibitor PP242 has demonstrated limited success in some rapamycin-insensitive tumours. We examined the therapeutic potential of combining PP242 with adenosine 50- monophosphate-activated protein kinase (AMPK) activator metformin, using a panel of colorectal carcinoma (CRC) cell lines. We found that the PP242 and metformin combination enhanced the suppression of CRC cell proliferation, colony formation, and cancer cell apoptosis induction. The effect of this combination was observed on AMPK phosphorylation. Western blotting showed that PP242 inhibited mTORC1 activation, as indicated by the reduced expression of its major substrate p-S6K1 and the partially reduced phosphorylation of eIF4E-binding protein 1 (4E-BP1). The inhibition of mTORC2-mediated AKT phosphorylation at Ser 473 (AKT Ser473) was transient and occurred in the first few hours of PP242 treatment; metformin exposure decreased the PP242 activity, counteracting AKT activation. We further demonstrated that this was related to direct AMPK-mediated phosphorylation of IRS-1 at Ser789. Thus, the combination of PP242 and metformin completely blocked the activity of both mTORC1 and mTORC2 kinase. This study suggests that this combination could be a more effective strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Cuicui Sun
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Ji'nan, China
| | - Xiaoyan Yang
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Ji'nan, China
| | - Zhi Jin
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Ji'nan, China
| | - Zuhua Gao
- Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Pathology, Beijing You An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Xia Y, Ge M, Xia L, Shan G, Qian H. CTSV (cathepsin V) promotes bladder cancer progression by increasing NF-κB activity. Bioengineered 2022; 13:10180-10190. [PMID: 35443863 PMCID: PMC9162008 DOI: 10.1080/21655979.2022.2061278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation is positively associated with the development of urinary bladder cancer. However, its detailed regulatory mechanism remains elusive. The quantitative real-time polymerase chain reaction was used to measure mRNA levels of relative genes. The protein levels were monitored by western blotting. Cell proliferation and viability were evaluated by the cell counting Kit 8 (CCK8) and colony formation assays, respectively. The dual-luciferase reporter assay was performed to assay the transcriptional activity. In vivo experiments were implemented in nude mice as well. The TCGA database analysis suggested that the aberrant expression of cathepsin V (CTSV) was related to a poor outcome in bladder cancer patients. CTSV boosted the inflammation reaction, which facilitated the development of bladder cancer. The overexpression of CTSV increased the proliferation and viability of bladder cancer cells. On the contrary, the deletion of CTSV significantly inhibited the proliferation and viability of bladder cancer cells. The tumor repression resulting from CTSV deficiency in vitro was also verified in vivo. Moreover, multiple cancer-associated luciferase screening showed that the overexpression of CTSV triggered the inflammatory signaling pathway, which could be restored by introducing the NF-κB inhibitor. CTSV is upregulated and promotes proliferation through the NF-κB pathway in bladder cancer and may be a potential target in inflammation-associated bladder cancer.
Collapse
Affiliation(s)
- Yue Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minghuan Ge
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xia
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guang Shan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huijun Qian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Xia H, Liu Y, Xu L, Mao H, Zhou Q, Xie Y. APOBEC1 complementation factor facilitates cell migration by promoting nucleus translocation of SMAD3 in renal cell carcinoma cells. In Vitro Cell Dev Biol Anim 2021; 57:501-509. [PMID: 34002283 DOI: 10.1007/s11626-021-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/02/2021] [Indexed: 11/25/2022]
Abstract
Metastasis is inevitable in about 30% of patients with primary renal cell carcinoma after nephrectomy treatment. APOBEC1 complementation factor (A1CF), an RNA binding protein, participates in tumor progressions such as growth, apoptosis, differentiation, and invasion. Here, we explored biological functions of A1CF and provided a new insight into renal cell carcinoma metastasis. Wound healing assay was conducted to detect migration in A1CF overexpression and knockdown stable cell lines. Quantitative PCR and western blot assays were utilized to test transcriptional and translation levels of A1CF and SMAD3 in A1CF overexpression and knockdown renal carcinoma cells. Nuclear and cytoplasmic protein separation assays were conducted to evaluate the subcellular distribution of A1CF and SMAD3. Immunoprecipitation assay was conducted to detect the interaction between A1CF and SMAD3. Our study demonstrated A1CF overexpression facilitated cell migration in renal carcinoma cells. A1CF deficiency downregulated expression of SMAD3, Snail1, and N-cadherin. In addition, A1CF promoted nucleus translocation of SMAD3 and interacted with SMAD3. SMAD3 knockdown attenuated cell migration induced by A1CF overexpression. Our study suggested A1CF facilitated cell migration by promoting nucleus translocation of SMAD3 in renal cell carcinoma cells.
Collapse
Affiliation(s)
- Hua Xia
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Yamin Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lei Xu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Huajie Mao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Qin Zhou
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
9
|
Zhang L, Ma T, Tao Q, Tan W, Chen H, Liu W, Lin P, Zhou D, Wang A, Jin Y, Tang K. Bta-miR-34b inhibits proliferation and promotes apoptosis via the MEK/ERK pathway by targeting MAP2K1 in bovine primary Sertoli cells. J Anim Sci 2021; 98:5909278. [PMID: 32954430 DOI: 10.1093/jas/skaa313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Immature Sertoli cell (SC) proliferation determines the final number of mature SCs and further regulates spermatogenesis. Accumulating evidence demonstrated that microRNAs (miRNAs) play an important role in SC proliferation, differentiation, and apoptosis. However, the effect and molecular mechanism of miRNA on bovine immature SC remain to be poorly understood. In this study, miRNA sequencing of testes collected in mature (24-mo old) and immature (neonatal) bulls was conducted to determine the miRNA expression profiles. MicroRNA-34b was one of the differentially expressed miRNAs and was selected for in-depth functional studies pertaining to SC growth. The results showed that miR-34b mimic transfection in primary Sertoli cells (PSC) inhibited cell proliferation and induced cell cycle arrested at G2 phase and decreased the expression of cell cycle-related genes such as CCNB1, CDK1, CDC25C, and C-MYC. MicroRNA-34b overexpression also leads to increased cell apoptosis, with proapoptotic genes P53 and BAX upregulated, while antiapoptotic gene BCL2 decreased. However, miR-34b knockdown had the opposite effects. Through a combination of transcriptome sequencing, bioinformatics analysis, dual-luciferase reporter assay, and Western blotting, mitogen-activated protein kinase kinase1 (MAP2K1), also known as MEK1, was identified as a target of miR-34b. In addition, PSC proliferation inhibition was mediated by cell cycle arrest and apoptosis with MAP2K1 interference. Overexpression of MAP2K1 effectively reversed the miR-34b-repressed PSC cell growth. Moreover, both miR-34b overexpression and MAP2K1 knockdown decreased the protein levels of P-ERK1/2, while MAP2K1 overexpression showed opposite effects. In summary, data suggest that miR-34b regulates PSC proliferation and apoptosis through the MEK/ERK signaling pathway. These data provide a theoretical and experimental framework for further clarifying the regulation of cell growth in PSC of bovine.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qibing Tao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wushuang Tan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Liu Q, Chen CY, Chen GL. High APOBEC1 Complementation Factor Expression Positively Modulates the Proliferation, Invasion, and Migration of Endometrial Cancer Cells Through Regulating P53/P21 Signaling Pathway. Cancer Biother Radiopharm 2020; 37:750-758. [PMID: 32818382 DOI: 10.1089/cbr.2020.3957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: APOBEC1 complementation factor (A1CF) is a component of the apolipoprotein-B messenger RNA editing complex that participates in various cellular processes and acts as an oncogene in many cancers. In this study, it was aimed to investigate the roles of A1CF and its potential mechanism in endometrial cancer (EC). Materials and Methods: Gene expression prolife was downloaded from The Cancer Genome Atlas database. Then Kaplan-Meier and Cox regression analyses were conducted to assess the prognostic value of A1CF in EC. Cell Counting Kit-8, plate clone formation, and transwell assays were used to estimate the functions of A1CF on the proliferation, invasion, and migration of EC cell. The gene set enrichment analysis was used to analyze the pathway that is enriched by A1CF, whereas quantitative real-time polymerase chain reaction and Western blot analyses were utilized to detect the mRNA and protein expression involved. Results: It was detected that the upregulated A1CF was enriched in P53/P21 signaling pathway and tightly associated with patients' age, stage, and death. Besides, high A1CF expression led to a shorter overall survival of patients and predicted a poor prognosis in EC. The overexpression of A1CF promoted the proliferation, invasion, and migration of EC cells, whereas the depletion of A1CF suppressed these processes. Moreover, P21 and P53 were reduced whereas cyclin D1 and proliferating cell nuclear antigen were induced along with the increasing of A1CF. However, the effects of silencing A1CF on these protein expressions were on the contrary. Conclusion: A1CF was highly expressed and closely related to the prognosis and progression of EC through the regulation of P53/P21 signaling pathway, providing a possible new therapy target site for EC.
Collapse
Affiliation(s)
- Qin Liu
- Department of the Third Gynaecology and Obstetrics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University) Changsha, China
| | - Chun-Yan Chen
- Department of the Third Gynaecology and Obstetrics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University) Changsha, China
| | - Gui-Lin Chen
- Department of Obstetrics and Gynecology, The Second People's Hospital, Lianyungang City, P.R. China
| |
Collapse
|