1
|
Bookout T, Shideler S, Cooper E, Goff K, Headley JV, Gieg LM, Lewenza S. Construction of Whole Cell Bacterial Biosensors as an Alternative Environmental Monitoring Technology to Detect Naphthenic Acids in Oil Sands Process-Affected Water. ACS Synth Biol 2024; 13:3197-3211. [PMID: 39312753 PMCID: PMC11495318 DOI: 10.1021/acssynbio.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
After extraction of bitumen from oil sands deposits, the oil sand process-affected water (OSPW) is stored in tailings ponds. Naphthenic acids (NA) in tailings ponds have been identified as the primary contributor to toxicity to aquatic life. As an alternative to other analytical methods, here we identify bacterial genes induced after growth in naphthenic acids and use synthetic biology approaches to construct a panel of candidate biosensors for NA detection in water. The main promoters of interest were the atuAR promoters from a naphthenic acid degradation operon and upstream TetR regulator, the marR operon which includes a MarR regulator and downstream naphthenic acid resistance genes, and a hypothetical gene with a possible role in fatty acid biology. Promoters were printed and cloned as transcriptional lux reporter plasmids that were introduced into a tailings pond-derived Pseudomonas species. All candidate biosensor strains were tested for transcriptional responses to naphthenic acid mixtures and individual compounds. The three priority promoters respond in a dose-dependent manner to simple, acyclic, and complex NA mixtures, and each promoter has unique NA specificities. The limits of NA detection from the various NA mixtures ranged between 1.5 and 15 mg/L. The atuA and marR promoters also detected NA in small volumes of OSPW samples and were induced by extracts of the panel of OSPW samples. While biosensors have been constructed for other hydrocarbons, here we describe a biosensor approach that could be employed in environmental monitoring of naphthenic acids in oil sands mining wastewater.
Collapse
Affiliation(s)
- Tyson Bookout
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Steve Shideler
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Evan Cooper
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Kira Goff
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - John V. Headley
- Environment
and Climate Change Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan, Canada S7N 3H5
| | - Lisa M. Gieg
- Biological
Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Shawn Lewenza
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
2
|
Marmitt M, Cauduro GP, Sbruzzi RC, Valiati VH. Evaluation of Differentially Expressed Candidate Genes in Benzo[a]pyrene Degradation by Burkholderia vietnamiensis G4. Mol Biotechnol 2024:10.1007/s12033-024-01284-6. [PMID: 39298104 DOI: 10.1007/s12033-024-01284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Bacteria-mediated bioremediation is widely employed for its environmental benefits. The genus Burkholderia can degrade persistent organic compounds, however, little is known about its mechanisms. To increase this knowledge, Burkholderia vietnamiensis G4 bacteria were exposed to benzo[a]pyrene, a recalcitrant compound, and the expression of twelve genes of interest was analyzed at 1, 12 and 24 h. In addition, benzo[a]pyrene degradation, evaluation of cell viability and fluorescence emission of assimilated benzo[a]pyrene was performed over 28 days. The up-regulated genes were xre, paaE, livG and pckA at the three times, ACAD, atoB, bmoA and proV at 1 h and AstB at 12 h. These genes are important for bacterial survival in stress situations, breakdown and metabolization of organic compounds, and nutrient transport and uptake. Furthermore, a 52% reduction of the pollutant was observed, there was no significant variation in the viability rate of the cells, and fluorescence indicated an accumulation of benzo[a]pyrene after 24 h. Our study demonstrates the bacteria adaptability and ability to modulate the expression of genes at different times and as needed. This increases our understanding of biodegradation processes and opens new possibilities for using this bacterial strain as a tool for the bioremediation of contaminated areas.
Collapse
Affiliation(s)
- Marcela Marmitt
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
| | - Guilherme Pinto Cauduro
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
| | - Renan César Sbruzzi
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil
- Laboratory of Immunogenetics, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Victor Hugo Valiati
- Laboratory of Genetics and Molecular Biology, University of Vale Do Rio Dos Sinos, São Leopoldo, Rio Grande Do Sul, Brazil.
| |
Collapse
|
3
|
Chang S, Gui Y, He X, Xue L. Transcriptome analysis of Acinetobacter calcoaceticus HX09 strain with outstanding crude-oil-degrading ability. Braz J Microbiol 2024; 55:2411-2422. [PMID: 38837015 PMCID: PMC11405614 DOI: 10.1007/s42770-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial remediation plays a pivotal role in the elimination of petroleum pollutants, making it imperative to investigate the capabilities of microorganisms in degrading petroleum. The present study describes the isolation of a promising strain, Acinetobacter sp. HX09, from petroleum-contaminated water. GC-MS analysis revealed a remarkable removal efficiency for short and medium-chain alkanes, with a rate of approximately 64% after a 7-days incubation at 30 °C. Transcriptome analysis of HX09 exhibited a predominant upregulation in gene expression levels by the induce of crude oil. Notably, genes such as alkane 1-monooxygenase, dehydrogenases and fatty acid metabolic enzymes exhibited fold changes range from 3.16 to 1.3. Based on the alkB gene sequences in HX09, the Phyre2 algorithm generated a three-dimensional structure that exhibited similarity to segments of acyl coenzyme desaturases and acyl lipid desaturases. Furthermore, three biodegradation-related gene clusters were predicted in HX09 based on the reference genome sequence. These findings contribute to our understanding of the hydrocarbon-degrading mechanisms employed by Acinetobacter species and facilitate the development of effective remediation strategies for crude oil- polluted environments.
Collapse
Affiliation(s)
- Sijing Chang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| | - Yanwen Gui
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Xiaoyan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
4
|
Al-Marri S, Eldos H, Ashfaq M, Saeed S, Skariah S, Varghese L, Mohamoud Y, Sultan A, Raja M. Isolation, identification, and screening of biosurfactant-producing and hydrocarbon-degrading bacteria from oil and gas industrial waste. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00804. [PMID: 37388572 PMCID: PMC10300049 DOI: 10.1016/j.btre.2023.e00804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Qatar is one of the biggest oil and gas producers in the world, coupled with it is challenging environmental conditions (high average temperature: >40 °C, low annual rainfall: 46.71 mm, and high annual evaporation rate: 2200 mm) harbors diverse microbial communities that are novel and robust, with the potential to biodegrade hydrocarbons. In this study, we collected hydrocarbon contaminated sludge, wastewater and soil samples from oil and gas industries in Qatar. Twenty-six bacterial strains were isolated in the laboratory from these samples using high saline conditions and crude oil as the sole carbon source. A total of 15 different bacterial genera were identified in our study that have not been widely reported in the literature or studied for their usage in the biodegradation of hydrocarbons. Interestingly, some of the bacteria that were identified belonged to the same genus however, demonstrated variable growth rates and biosurfactant production. This indicates the possibility of niche specialization and specific evolution to acquire competitive traits for better survival. The most potent strain EXS14, identified as Marinobacter sp., showed the highest growth rate in the oil-containing medium as well as the highest biosurfactant production. When this strain was further tested for biodegradation of hydrocarbons, the results showed that it was able to degrade 90 to 100% of low and medium molecular weight hydrocarbons and 60 to 80% of high molecular weight (C35 to C50) hydrocarbons. This study offers many promising leads for future studies of microbial species and their application for the treatment of hydrocarbon contaminated wastewater and soil in the region and in other areas with similar environmental conditions.
Collapse
Affiliation(s)
| | | | | | - S. Saeed
- ExxonMobil Research Qatar, Doha, Qatar
| | - S. Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | | | - Y.A. Mohamoud
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | - A.A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | - M.M. Raja
- Qatargas Operating Company, Doha, Qatar
| |
Collapse
|
5
|
Abdullah K, Wilkins D, Ferrari BC. Utilization of-Omic technologies in cold climate hydrocarbon bioremediation: a text-mining approach. Front Microbiol 2023; 14:1113102. [PMID: 37396353 PMCID: PMC10313077 DOI: 10.3389/fmicb.2023.1113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
Hydrocarbon spills in cold climates are a prominent and enduring form of anthropogenic contamination. Bioremediation is one of a suite of remediation tools that has emerged as a cost-effective strategy for transforming these contaminants in soil, ideally into less harmful products. However, little is understood about the molecular mechanisms driving these complex, microbially mediated processes. The emergence of -omic technologies has led to a revolution within the sphere of environmental microbiology allowing for the identification and study of so called 'unculturable' organisms. In the last decade, -omic technologies have emerged as a powerful tool in filling this gap in our knowledge on the interactions between these organisms and their environment in vivo. Here, we utilize the text mining software Vosviewer to process meta-data and visualize key trends relating to cold climate bioremediation projects. The results of text mining of the literature revealed a shift over time from optimizing bioremediation experiments on the macro/community level to, in more recent years focusing on individual organisms of interest, interactions within the microbiome and the investigation of novel metabolic degradation pathways. This shift in research focus was made possible in large part by the rise of omics studies allowing research to focus not only what organisms/metabolic pathways are present but those which are functional. However, all is not harmonious, as the development of downstream analytical methods and associated processing tools have outpaced sample preparation methods, especially when dealing with the unique challenges posed when analyzing soil-based samples.
Collapse
Affiliation(s)
- Kristopher Abdullah
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Wilkins
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, Environment and Water, Kingston, TAS, Australia
| | - Belinda C. Ferrari
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Petroleum Hydrocarbon Catabolic Pathways as Targets for Metabolic Engineering Strategies for Enhanced Bioremediation of Crude-Oil-Contaminated Environments. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Anthropogenic activities and industrial effluents are the major sources of petroleum hydrocarbon contamination in different environments. Microbe-based remediation techniques are known to be effective, inexpensive, and environmentally safe. In this review, the metabolic-target-specific pathway engineering processes used for improving the bioremediation of hydrocarbon-contaminated environments have been described. The microbiomes are characterised using environmental genomics approaches that can provide a means to determine the unique structural, functional, and metabolic pathways used by the microbial community for the degradation of contaminants. The bacterial metabolism of aromatic hydrocarbons has been explained via peripheral pathways by the catabolic actions of enzymes, such as dehydrogenases, hydrolases, oxygenases, and isomerases. We proposed that by using microbiome engineering techniques, specific pathways in an environment can be detected and manipulated as targets. Using the combination of metabolic engineering with synthetic biology, systemic biology, and evolutionary engineering approaches, highly efficient microbial strains may be utilised to facilitate the target-dependent bioprocessing and degradation of petroleum hydrocarbons. Moreover, the use of CRISPR-cas and genetic engineering methods for editing metabolic genes and modifying degradation pathways leads to the selection of recombinants that have improved degradation abilities. The idea of growing metabolically engineered microbial communities, which play a crucial role in breaking down a range of pollutants, has also been explained. However, the limitations of the in-situ implementation of genetically modified organisms pose a challenge that needs to be addressed in future research.
Collapse
|
7
|
Zhao Y, Min H, Luo K, Chen H, Chen Q, Sun W. Insight into sulfamethoxazole effects on aerobic denitrification by strain Pseudomonas aeruginosa PCN-2: From simultaneous degradation performance to transcriptome analysis. CHEMOSPHERE 2023; 313:137471. [PMID: 36493888 DOI: 10.1016/j.chemosphere.2022.137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
It is a well-established fact that aerobic denitrifying strains are profoundly affected by antibiotics, but bacterium performing simultaneous aerobic denitrification and antibiotic degradation is hardly reported. Here, a typical aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 was discovered to be capable of sulfamethoxazole (SMX) degradation. The results showed that nitrate removal efficiency was decreased from 100% to 88.12%, but the resistance of strain PCN-2 to SMX stress was enhanced with the increment of SMX concentration from 0 to 100 mg/L. Transcriptome analysis revealed that the down-regulation of energy metabolism pathways rather than the denitrifying functional genes was responsible for the suppressed nitrogen removal, while the up-regulation of antibiotic resistance pathways (e.g., biofilm formation, multi-drug efflux system, and quorum sensing) ensured the survival of bacterium and the carrying out of aerobic denitrification. Intriguingly, strain PCN-2 could degrade SMX during aerobic denitrification. Seven metabolites were identified by the UHPLC-MS, and three degradation pathways (which includes a new pathway that has never been reported) was proposed combined with the expressions of drug metabolic genes (e.g., cytP450, FMN, ALDH and NAT). This work provides a mechanistic understanding of the metabolic adaption of strain PCN-2 under SMX stress, which provided a broader idea for the treatment of SMX-containing wastewater.
Collapse
Affiliation(s)
- Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China
| | - Hongchao Min
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29634, United States
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China
| |
Collapse
|
8
|
Gao Y, Cai M, Shi K, Sun R, Liu S, Li Q, Wang X, Hua W, Qiao Y, Xue J, Xiao X. Bioaugmentation enhance the bioremediation of marine crude oil pollution: Microbial communities and metabolic pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:228-238. [PMID: 36640034 DOI: 10.2166/wst.2022.406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bioaugmentation is an effective strategy used to speed up the bioremediation of marine oil spills. In the present study, a highly efficient petroleum degrading bacterium (Pseudomonas aeruginosa ZS1) was applied to the bioremediation of simulated crude oil pollution in different sampling sites in the South China Sea. The metabolic pathways of ZS1 to degrade crude oil, the temporal dynamics of the microbial community response to crude oil contamination, and the biofortification process were investigated. The results showed that the abundance and diversity of the microbial community decreased sharply after the occurrence of crude oil contamination. The best degradation rate of crude oil, which was achieved in the samples from the sampling site N3 after the addition of ZS1 bacteria, was 50.94% at 50 days. C13 alkanes were totally oxidized by ZS1 in the 50 days. The degradation rate of solid n-alkanes (C18-C20) was about 70%. Based on the whole genome sequencing and the metabolites analysis of ZS1, we found that ZS1 degraded n-alkanes through the terminal oxidation pathway and aromatic compounds through the catechol pathway. This study provides data support for further research on biodegradation pathways of crude oil and contributes to the subsequent development of more reasonable bioremediation strategies.
Collapse
Affiliation(s)
- Yu Gao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail: ; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266510, China
| | - Mengmeng Cai
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail:
| | - Ke Shi
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail:
| | - Rui Sun
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail: ; Affiliated Hospital of Jining Medical University, Jining 272007, China
| | - Suxiang Liu
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail:
| | - Qintong Li
- Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, Gunma 3740193, Japan
| | - Xiaoyan Wang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail:
| | - Wenxin Hua
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail:
| | - Yanlu Qiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail: ; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266510, China
| | - Jianliang Xue
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail: ; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266510, China
| | - Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China E-mail: ; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266510, China
| |
Collapse
|
9
|
Gao D, Zhao H, Wang L, Li Y, Tang T, Bai Y, Liang H. Current and emerging trends in bioaugmentation of organic contaminated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115799. [PMID: 35930885 DOI: 10.1016/j.jenvman.2022.115799] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Organic contaminated soils constitute an important environmental problem, whereas field applicability of existing physical-chemical methods has encountered numerous obstacles, such as high chemical cost, large energy consumption, secondary pollution, and soil degradation. Bioaugmentation is an environmentally friendly and potentially economic technology that efficiently removes toxic pollutants from organic contaminated soils by microorganisms or their enzymes and bioremediation additives. This review attempted to explore the recent advances in bioaugmentation of organic contaminated soils and provided a comprehensive summary of various bioaugmentation methods, including bacterial, fungus, enzymes and bioremediation additives. The practical application of bioaugmentation is frequently limited by soil environmental conditions, microbial relationships, enzyme durability and remediation cycles. To tackle these problems, the future of bioaugmentation can be processed from sustainability of broad-spectrum bioremediation carriers, microbial/enzyme agents targeting combined contaminants, desorption of environmentally friendly additives and small molecular biological stimulants. Findings of this research are expected to provide new references for bioaugmentation methods that are practically feasible and economically potential.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huan Zhao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
10
|
Hentati D, Abed RMM, Abotalib N, El Nayal AM, Ashraf I, Ismail W. Biotreatment of oily sludge by a bacterial consortium: Effect of bioprocess conditions on biodegradation efficiency and bacterial community structure. Front Microbiol 2022; 13:998076. [PMID: 36212842 PMCID: PMC9532598 DOI: 10.3389/fmicb.2022.998076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
We studied the biodegradation of oily sludge generated by a petroleum plant in Bahrain by a bacterial consortium (termed as AK6) under different bioprocess conditions. Biodegradation of petroleum hydrocarbons in oily sludge (C11-C29) increased from 24% after two days to 99% after 9 days of incubation in cultures containing 5% (w/v) of oily sludge at 40°C. When the nitrogen source was excluded from the batch cultures, hydrocarbon biodegradation dropped to 45% within 7 days. The hydrocarbon biodegradation decreased also by increasing the salinity to 3% and the temperature above 40°C. AK6 tolerated up to 50% (w/v) oily sludge and degraded 60% of the dichloromethane-extractable oil fraction. Illumina-MiSeq analyses revealed that the AK6 consortium was mainly composed of Gammaproteobacteria (ca. 98% of total sequences), with most sequences belonging to Klebsiella (77.6% of total sequences), Enterobacter (16.7%) and Salmonella (5%). Prominent shifts in the bacterial composition of the consortium were observed when the temperature and initial sludge concentration increased, and the nitrogen source was excluded, favoring sequences belonging to Pseudomonas and Stenotrophomonas. The AK6 consortium is endowed with a strong oily sludge tolerance and biodegradation capability under different bioprocess conditions, where Pseudomonas spp. appear to be crucial for hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Dorra Hentati
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Raeid M. M. Abed
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Nasser Abotalib
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ashraf M. El Nayal
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | | | - Wael Ismail
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
- *Correspondence: Wael Ismail,
| |
Collapse
|
11
|
Li ZW, Wang JH. Analysis of the functional gene of degrading BDE-47 by Acinetobacter pittii GB-2 based on transcriptome sequencing. Gene 2022; 844:146826. [PMID: 35998843 DOI: 10.1016/j.gene.2022.146826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) is one of the most widely distributed PBDEs. BDE-47 is also the most abundant in organisms and the most toxic to humans and animals. Herein, we have studied the pathway of BDE-47 degradation and gene involvement in Acinetobacter pittii GB-2. This degradation is dominated by hydroxylation, resulting in hydroxylated products 6-OH-BDE-47, 5-OH-BDE-47 and 2'-OH-BDE-28, and bromophenol products 2,4-DBP and 4-BP. Transcriptome sequencing results showed 359 differentially expressed genes (DEGs) induced by BDE-47, of which 159 were up-regulated and 200 were down-regulated. The up-regulated ones were mainly related to substance transport, degradation and cell stress. From these results, we suggest that 1,2-dioxygenase, phenol hydroxylase and monooxygenase are involved in BDE-47 degradation. The function of AntA gene was identified by constructing a prokaryotic expression vector. Our study contributes to understanding how the metabolism of strain GB-2 changes under BDE-47 stress conditions, and sheds light on the mechanism of BDE-47 degradation.
Collapse
Affiliation(s)
- Zi-Wei Li
- School of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ji-Hua Wang
- School of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
12
|
Hassan S, Sabreena, Khurshid Z, Bhat SA, Kumar V, Ameen F, Ganai BA. Marine Bacteria and Omic Approaches: A Novel and Potential Repository for Bioremediation Assessment. J Appl Microbiol 2022; 133:2299-2313. [PMID: 35818751 DOI: 10.1111/jam.15711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Marine environments accommodating diverse assortments of life constitute a great pool of differentiated natural resources. The cumulative need to remedy unpropitious effects of anthropogenic activities on estuaries, and coastal marine ecosystems has propelled the development of effective bioremediation strategies. Marine bacteria producing biosurfactants are promising agents for bio-remediating oil pollution in marine environments, making them prospective candidates for enhancing oil recovery. Molecular omics technologies are considered an emerging field of research in ecological and diversity assessment owing to their utility in environmental surveillance and bioremediation of polluted sites. A thorough literature review was undertaken to understand the applicability of different omic techniques employed for bioremediation assessment using marine bacteria. This review further establishes that for bioremediation of environmental pollutants (i.e., heavy metals, hydrocarbons, xenobiotic and numerous recalcitrant compounds), organisms isolated from marine environments can be better utilized for their removal. The literature survey shows that omics approaches can provide exemplary knowledge about microbial communities and their role in the bioremediation of environmental pollutants. This review centres on applications of marine bacteria in enhanced bioremediation, utilizing the omics approaches that can be a vital biological contrivance in environmental monitoring to tackle environmental degradation. The paper aims to identify the gaps in investigations involving marine bacteria to help researchers, ecologists, and decision-makers to develop a holistic understanding regarding their utility in bioremediation assessment.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, India
| | | | | | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh-495009, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Innovative Culturomic Approaches and Predictive Functional Metagenomic Analysis: The Isolation of Hydrocarbonoclastic Bacteria with Plant Growth Promoting Capacity. WATER 2022. [DOI: 10.3390/w14020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Innovative culturomic approaches were adopted to isolate hydrocarbonoclastic bacteria capable of degrading diesel oil, bitumen and a selection of polycyclic aromatic hydrocarbons (PAH), e.g., pyrene, anthracene, and dibenzothiophene, from a soil historically contaminated by total petroleum hydrocarbons (TPH) (10,347 ± 98 mg TPH/kg). The culturomic approach focussed on the isolation of saprophytic microorganisms and specialist bacteria utilising the contaminants as sole carbon sources. Bacterial isolates belonging to Pseudomonas, Arthrobacter, Achromobacter, Bacillus, Lysinibacillus, Microbacterium sps. were isolated for their capacity to utilise diesel oil, bitumen, pyrene, anthracene, dibenzothiphene, and their mixture as sole carbon sources. Pseudomonas, Arthrobacter, Achromobacter and Microbacterium sps. showed plant growth promoting activity, producing indole-3-acetic acid and expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. In parallel to the culturomic approach, in the microbial community of interest, bacterial community metabarcoding and predictive functional metagenomic analysis were adopted to confirm the potentiality of the isolates in terms of their functional representativeness. The combination of isolation and molecular approaches for the characterisation of a TPH contaminated soil microbial community is proposed as an instrument for the construction of an artificial hydrocarbonoclastic microbiota for environmental restoration.
Collapse
|
14
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 2021; 203:5859-5885. [PMID: 34545411 DOI: 10.1007/s00203-021-02576-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
15
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
16
|
A Novel Regulator Participating in Nitrogen Removal Process of Bacillus subtilis JD-014. Int J Mol Sci 2021; 22:ijms22126543. [PMID: 34207153 PMCID: PMC8234713 DOI: 10.3390/ijms22126543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Aerobic denitrification is considered as a promising biological method to eliminate the nitrate contaminants in waterbodies. However, the molecular mechanism of this process varies in different functional bacteria. In this study, the nitrogen removal characteristics for a newly isolated aerobic denitrifier Bacillus subtilis JD-014 were investigated, and the potential functional genes involved in the aerobic denitrification process were further screened through transcriptome analysis. JD-014 exhibited efficient denitrification performance when having sodium succinate as the carbon source with the range of nitrate concentration between 50 and 300 mg/L. Following the transcriptome data, most of the up-regulated differentially expressed genes (DEGs) were associated with cell motility, carbohydrate metabolism, and energy metabolism. Moreover, gene nirsir annotated as sulfite reductase was screened out and further identified as a regulator participating in the nitrogen removal process within JD-014. The findings in present study provide meaningful information in terms of a comprehensive understanding of genetic regulation of nitrogen metabolism, especially for Bacillus strains.
Collapse
|
17
|
Zhao C, Chen L, Yu C, Hu B, Huang H, Chen Y, Wang X, Ye Y, Zhuang X, Li Y. Fabrication of hydrophobic NiFe 2O 4@poly(DVB-LMA) sponge via a Pickering emulsion template method for oil/water separation. SOFT MATTER 2021; 17:2327-2339. [PMID: 33480913 DOI: 10.1039/d0sm01902j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Super-hydrophobic porous absorbents are convenient, low-cost, efficient and environment-friendly materials in the treatment of oil spills. In this work, a simple Pickering emulsion template method was employed to fabricate an interconnected porous poly(DVB-LMA) sponge. A new co-Pickering stabilization system of Span 80 and NiFe2O4 nanoparticles was used to prepare ultra-concentrated internal phase water-in-oil (W/O) emulsions. After further polymerization, the resulting sponges were generated, which exhibited excellent adsorption selectivity due to the super-hydrophobicity and super-lipophilicity. Furthermore, the characterization results indicated that the composites had superior thermal stability, low density, high porosity and a flexible three-dimensional porous structure. Besides, the addition of nickel ferrite nanoparticles provided the materials with extra magnetic operability. High oil adsorption capacity (up to 36.9-84.2 g g-1), high oil retention, fast adsorption rate and superior reusability allowed the materials to be applied in the treatment of oily water.
Collapse
Affiliation(s)
- Caimei Zhao
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Lei Chen
- School of Civil Engineering, Guangdong Ocean University Cunjin College, Zhanjiang, 524094, P. R. China
| | - Chuanming Yu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Binghua Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Haoxuan Huang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Yongjie Chen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Xin Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Yongshi Ye
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Xiaohui Zhuang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Yong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| |
Collapse
|