1
|
Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu C, Kang Q, Wei T. Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol Cell Biochem 2024; 479:3393-3404. [PMID: 38353878 DOI: 10.1007/s11010-024-04924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H2O2 to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H2O2-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H2O2. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H2O2 treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H2O2 treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H2O2-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H2O2 in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qiaochu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Liang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qianyan Kang
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Kriukov E, Soucy JR, Labrecque E, Baranov P. Unraveling the developmental heterogeneity within the human retina to reconstruct the continuity of retinal ganglion cell maturation and stage-specific intrinsic and extrinsic factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618776. [PMID: 39464118 PMCID: PMC11507843 DOI: 10.1101/2024.10.16.618776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Tissue development is a complex spatiotemporal process with multiple interdependent components. Anatomical, histological, sequencing, and evolutional strategies can be used to profile and explain tissue development from different perspectives. The introduction of scRNAseq methods and the computational tools allows to deconvolute developmental heterogeneity and draw a decomposed uniform map. In this manuscript, we decomposed the development of a human retina with a focus on the retinal ganglion cells (RGC). To increase the temporal resolution of retinal cell classes maturation state we assumed the working hypothesis that that maturation of retinal ganglion cells is a continuous, non-discrete process. We have assembled the scRNAseq atlas of human fetal retina from fetal week 8 to week 27 and applied the computational methods to unravel maturation heterogeneity into a uniform maturation track. We align RGC transcriptomes in pseudotime to map RGC developmental fate trajectories against the broader timeline of retinal development. Through this analysis, we identified the continuous maturation track of RGC and described the cell-intrinsic (DEGs, maturation gene profiles, regulons, transcriptional motifs) and -extrinsic profiles (neurotrophic receptors across maturation, cell-cell interactions) of different RGC maturation states. We described the genes involved in the retina and RGC maturation, including de novo RGC maturation drivers. We demonstrate the application of the human fetal retina atlas as a reference tool, allowing automated annotation and universal embedding of scRNAseq data. Altogether, our findings deepen the current knowledge of the retina and RGC maturation by bringing in the maturation dimension for the cell class vs. state analysis. We show how the pseudotime application contributes to developmental-oriented analyses, allowing to order the cells by their maturation state. This approach not only improves the downstream computational analysis but also provides a true maturation track transcriptomics profile.
Collapse
Affiliation(s)
- Emil Kriukov
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Jonathan R. Soucy
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Everett Labrecque
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Petr Baranov
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Zhao WJ, Fan CL, Hu XM, Ban XX, Wan H, He Y, Zhang Q, Xiong K. Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials. Cell Mol Neurobiol 2023; 43:3161-3178. [PMID: 37338781 PMCID: PMC11410022 DOI: 10.1007/s10571-023-01373-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Glaucoma is a group of diseases characterized by the degeneration of retinal ganglion cells (RGCs) and progressive, irreversible vision loss. High intraocular pressure (IOP) heightens the likelihood of glaucoma and correlates with RGC loss. While the current glaucoma therapy prioritizes lower the IOP; however, RGC, and visual loss may persist even when the IOP is well-controlled. As such, discovering and creating IOP-independent neuroprotective strategies for safeguard RGCs is crucial for glaucoma management. Investigating and clarifying the mechanism behind RGC death to counteract its effects is a promising direction for glaucoma control. Empirical studies of glaucoma reveal the role of multiple regulated cell death (RCD) pathways in RGC death. This review delineates the RCD of RGCs following IOP elevation and optic nerve damage and discusses the substantial benefits of mitigating RCD in RGCs in preserving visual function.
Collapse
Affiliation(s)
- Wen-Juan Zhao
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Chun-Ling Fan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Ye He
- Changsha Aier Eye Hospital, Hunan Province, No. 188, Furong Road, Furong District, Changsha City, 410015, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410013, China.
| |
Collapse
|
4
|
Zhao L, Ling L, Lu J, Jiang F, Sun J, Zhang Z, Huang Y, Liu X, Zhu Y, Fu X, Peng S, Yuan W, Zhao R, Zhang Z. Reactive oxygen species-responsive mitochondria-targeted liposomal quercetin attenuates retinal ischemia-reperfusion injury via regulating SIRT1/FOXO3A and p38 MAPK signaling pathways. Bioeng Transl Med 2023; 8:e10460. [PMID: 37206232 PMCID: PMC10189480 DOI: 10.1002/btm2.10460] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury is involved in the pathogenesis of various vision-threatening diseases. The overproduction of reactive oxygen species (ROS) is thought to be the main cause of RIR injury. A variety of natural products, including quercetin (Que), exhibit potent antioxidant activity. However, the lack of an efficient delivery system for hydrophobic Que and the presence of various intraocular barriers limit the effective retinal delivery of Que in clinical settings. In this study, we encapsulated Que into ROS-responsive mitochondria-targeted liposomes (abbreviated to Que@TPP-ROS-Lips) to achieve the sustained delivery of Que to the retina. The intracellular uptake, lysosome escape ability, and mitochondria targeting ability of Que@TPP-ROS-Lips were evaluated in R28 retinal cells. Treating R28 cells with Que@TPP-ROS-Lips significantly ameliorated the decrease in ATP content, ROS generation, and increase in the release of lactate dehydrogenase in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. In a rat model, the intravitreal injection of Que@TPP-ROS-Lips 24 h after inducing retinal ischemia significantly enhanced retinal electrophysiological recovery and reduced neuroinflammation, oxidative stress, and apoptosis. Que@TPP-ROS-Lips were taken up by retina for at least 14 days after intravitreal administration. Molecular docking and functional biological experiments revealed that Que targets FOXO3A to inhibit oxidative stress and inflammation. Que@TPP-ROS-Lips also partially inhibited the p38 MAPK signaling pathway, which contributes to oxidative stress and inflammation. In conclusion, our new platform for ROS-responsive and mitochondria-targeted drug release shows promise for the treatment of RIR injury and promotes the clinical application of hydrophobic natural products.
Collapse
Affiliation(s)
- Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Longbing Ling
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Feng Jiang
- Department of OphthalmologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Jianchao Sun
- School of Environment and Material EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoqian Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Yanjuan Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Wenze Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| |
Collapse
|
5
|
Ma X, Shao S, Xiao F, Zhang H, Zhang R, Wang M, Li G, Yan M. Platycodon grandiflorum extract: chemical composition and whitening, antioxidant, and anti-inflammatory effects. RSC Adv 2021; 11:10814-10826. [PMID: 35423572 PMCID: PMC8695864 DOI: 10.1039/d0ra09443a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
Whitening cosmetics have a large market scale and broad development prospects, while whitening products of traditional Chinese medicine have always been a research hotspot. In this study, the whitening active extract of Platycodon grandiflorum (PGE) was isolated and purified for the first time, and the whitening activity mechanism and chemical composition of PGE were elucidated. A total of 45 components were identified via high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, including arbutin, syringin, chlorogenic acid, platycoside E, platycodin D3, baicalin, platycodin D, and luteolin. The scavenging rates of PGE toward DPPH and ABTS free radicals were 98.03% and 84.30%, respectively. The inhibition rate of PGE toward tyrosinase was up to 97.71%. The PGE had significant anti-inflammatory effects on RAW264.7 macrophages stimulated by lipopolysaccharide (LPS) and had significant inhibition effects on tyrosinase and melanin generation of B16F10 cells stimulated by α-MSH. The results showed that the PGE achieved a synergistic whitening effect by inhibiting the activation of oxygen free radicals on tyrosinase, antioxidation, anti-inflammatory effect, enzyme activity, and melanin generation. As a whitening agent extracted from natural plants, PGE has great potential in the research and development of plant whitening cosmetics, which lays a foundation for the further development and utilization of Platycodon grandiflorum resources and also provides a theoretical basis for the development of green and organic whitening cosmetics. Whitening cosmetics have a large market scale and broad development prospects, while whitening products of traditional Chinese medicine have always been a research hotspot.![]()
Collapse
Affiliation(s)
- Xintong Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun Jilin China
| | - Shuai Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun China
| | - Fengqin Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun Jilin China
| | - Hongyin Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun Jilin China
| | - Rongrong Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun Jilin China
| | - Miao Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun China
| | - Guangzhe Li
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine Changchun Jilin China
| | - Mingming Yan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun Jilin China.,Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine Changchun Jilin China
| |
Collapse
|