1
|
Chu N, Tang Y, Wang CJ, Pei JN, Luo SL, Yu Y, Liu ZZ, Liu HY, Qiu XM, Wang L, Li DJ, Gu WR. ANP promotes HTR-8/SVneo cell invasion by upregulating protein kinase N 3 via autophagy inhibition. FASEB J 2023; 37:e22779. [PMID: 36723798 DOI: 10.1096/fj.202200833rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 02/02/2023]
Abstract
Preeclampsia is a gestational disease characterized by two major pathological changes-shallow trophoblast invasion and impaired spiral artery remodeling. Atrial natriuretic peptide (ANP) is a kind of peptide hormone that regulates blood pressure, while the lack of active ANP participates in preeclampsia pathogenesis. However, the underlying mechanism of how ANP modulates trophoblasts function remains unclarified. Here, we performed isobaric tags for relative and absolute quantification (iTRAQ) in ANP-treated HTR-8/SVneo cells and identified Protein Kinase 3 (PKN3) as the downstream factor of ANP, which was downregulated in preeclamptic placenta. Chromatin immunoprecipitation analysis and luciferase assays showed that NFYA was one of the transcription factors for the PKN3 promoter, which was also regulated by ANP treatment in HTR-8/SVneo cells. Transmission electron microscopy and Western Blotting in HTR-8/SVneo cells indicated that ANP inhibited autophagy via AMPK-mTORC1 signaling, while excess autophagy was observed in preeclamptic placenta. The increased expression of PKN3 and enhanced cell invasion ability in HTR-8/SVneo cells induced by ANP could be abolished by autophagy activation or transfection with PKN3 shRNA or NFYA shRNA or NPR-A shRNA via regulating the invasion-related genes and the epithelial mesenchymal transition molecules. Our results demonstrated that ANP could enhance trophoblast invasion by upregulating PKN3 via NFYA promotion through autophagy inhibition in an AMPK/mTORC1 signaling-dependent manner.
Collapse
Affiliation(s)
- Nan Chu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yao Tang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Cheng-Jie Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jiang-Nan Pei
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Shou-Ling Luo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yi Yu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhen-Zhen Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hai-Yan Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xue-Min Qiu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Da-Jin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Wei-Rong Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
2
|
Pleiotropic Roles of Atrial Natriuretic Peptide in Anti-Inflammation and Anti-Cancer Activity. Cancers (Basel) 2022; 14:cancers14163981. [PMID: 36010974 PMCID: PMC9406604 DOI: 10.3390/cancers14163981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The relationship between inflammation and carcinogenesis, as well as the response to anti-tumor therapy, is intimate. Atrial natriuretic peptides (ANPs) play a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance. In addition, ANPs exert immune-modulatory effects in the tissue microenvironment, thus exhibiting a fascinating ability to prevent inflammation-related tumorigenesis and cancer recurrence. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs have potential therapeutic value in tumors. Here, we summarized the roles of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs, contributing to the development of ANP-based anti-cancer agents. Abstract The atrial natriuretic peptide (ANP), a cardiovascular hormone, plays a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance and is approved to treat congestive heart failure. In addition, there is a growing realization that ANPs might be related to immune response and tumor growth. The anti-inflammatory and immune-modulatory effects of ANPs in the tissue microenvironment are mediated through autocrine or paracrine mechanisms, which further suppress tumorigenesis. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs act on several hallmarks of cancer, such as inflammation, angiogenesis, sustained tumor growth, and metastasis. In this review, we summarized the contributions of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs.
Collapse
|
3
|
Aziz SJ, Jalal JA, Hamadameen KS. Stromal CD10 expression in gastric adenocarcinoma. J Med Life 2022; 15:679-684. [PMID: 35815076 PMCID: PMC9262272 DOI: 10.25122/jml-2021-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Gastric adenocarcinoma is a malignant neoplasm of the gastric mucosa composed of neoplastic cells and supporting stroma as with any neoplasm. Stromal myofibroblasts have an essential role in creating the tumor-promoting environment. They express certain substances, such as CD10. In this study, stromal CD10 expression was investigated by immunohistochemistry in gastric carcinoma, and its association with specific clinicopathological parameters was analyzed. Formalin-fixed paraffin-embedded blocks of 80 gastric adenocarcinoma cases were collected retrospectively in a private laboratory of the Rizgary Teaching Hospital for 2 years (January 2018–January 2020). Finally, the immunohistochemical study of CD10 expression in stromal cells was performed. According to the results, stromal CD10 immunoreactivity was detected in 15% of the cases. Furthermore, a statistically significant correlation was observed between stromal CD10 and the tumor type (P=0.015). However, no statistically significant relationship was identified between stromal CD10 expression and patients' age, gender, lymphovascular invasion, lymph node status, and tumor stage and grade. The results suggest a statistically significant positive correlation between stromal CD10 expression and tumor type.
Collapse
Affiliation(s)
- Sara Jalal Aziz
- Department of Histopathology, Rizgary Teaching Hospital, Erbil, Iraq,Corresponding Author: Sara Jalal Aziz, Department of Histopathology, Rizgary Teaching Hospital, Erbil, Iraq. E-mail:
| | - Jalal Ali Jalal
- Department of Basic Sciences/Pathology, College of Medicine, Hawler Medical University, Erbil, Iraq
| | | |
Collapse
|
4
|
Peng ZP, Huang SF, Li JJ, Tang XK, Wang XY, Li HM. The Effects of Hedgehog Signaling Pathway on the Proliferation and Apoptosis of Melanoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:4984866. [PMID: 35027924 PMCID: PMC8752239 DOI: 10.1155/2022/4984866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Studies have found that the abnormality of the Hedgehog signaling pathway is related to the occurrence and development of a variety of tumors, but the effect of this signaling pathway on melanoma cells is still unclear. METHODS This study aimed to discuss the effect of Hedgehog signaling pathway on the proliferation and apoptosis of human malignant melanoma A375 cells and explore its possible mechanism in the proliferation and apoptosis of melanoma cells. Different concentrations of Hedgehog signaling pathway inhibitor cyclopamine (5, 10, 20 and 40 μM) were used to treat human melanoma A375 cells for 24, 48, and 72 h, and set a blank control group (0 μM). Trypan blue cell counting method was used to detect cell viability. MTT method was used to detect the inhibition rate of cell proliferation. Transwell was used to detect cell invasion, and flow cytometry was used to detect cell apoptosis. RESULTS Through the trypan blue cell counting method and MTT experiment, it was found that the Hedgehog signaling pathway inhibitor cyclopamine has an inhibitory effect on the proliferation and viability of melanoma A375 cells (P < 0.05), and the proliferation inhibitory effect is enhanced with prolonged action time in a dose- and time-dependent manner. Transwell experiment showed that compared with the blank control group, the invasion and migration ability of the treated melanoma A375 cells are significantly reduced, and the difference is statistically significant (P < 0.05). Cell apoptosis experiment showed that compared with the blank control group, the apoptosis rate of A375 cells is significantly higher after treated by 40 μM cyclopamine for 24 h, and the difference is statistically significant (P < 0.05). Gli1 and Bcl-2 protein are highly expressed in melanoma A375 cells, and their expressions show a downward trend (P < 0.05) after being treated by cyclopamine. CONCLUSION Cyclopamine inhibits cell proliferation and induces cell apoptosis by downregulating Gli1. Hedgehog signaling pathway can be used as a new target for the treatment of malignant melanoma, and multiple measures can be used to inhibit the signaling pathway to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Zhi-Peng Peng
- Dermatology Department, The Affiliated Nanning Infectious Disease Hospital of Guangxi Medical University and the Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Shan-Fu Huang
- Dermatology Department, The People's Hospital of Binyang County, Binyang 530405, China
| | - Jun-Jun Li
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Xi-Ke Tang
- Dermatology Department, The Affiliated Nanning Infectious Disease Hospital of Guangxi Medical University and the Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Xi-Yue Wang
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530022, China
| | - Hong-Mian Li
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| |
Collapse
|