1
|
Yi H, Zhang S, Swinderman J, Wang Y, Kanakaveti V, Hung KL, Wong ITL, Srinivasan S, Curtis EJ, Bhargava-Shah A, Li R, Jones MG, Luebeck J, Zhao Y, Belk JA, Kraft K, Shi Q, Yan X, Pritchard SK, Liang FM, Felsher DW, Gilbert LA, Bafna V, Mischel PS, Chang HY. EcDNA-borne PVT1 fusion stabilizes oncogenic mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646515. [PMID: 40236070 PMCID: PMC11996508 DOI: 10.1101/2025.04.01.646515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Extrachromosomal DNA (ecDNA) amplifications are prevalent drivers of human cancers. We show that ecDNAs exhibit elevated structural variants leading to gene fusions that produce oncogene fusion transcripts. The long noncoding RNA (lncRNA) gene PVT1 is the most recurrent structural variant across cancer genomes, with PVT1-MYC fusions arising most frequently on ecDNA. PVT1 exon 1 is the predominant 5' partner fused to MYC or other oncogenes on the 3' end. Mechanistic studies demonstrate that PVT1 exon 1 confers enhanced RNA stability for fusion transcripts, which requires PVT1 exon 1 interaction with SRSF1 protein. Genetic rescue of MYC-addicted cancer models and isoform-specific single-cell RNA sequencing of tumors reveal that PVT1-MYC better supports MYC dependency and better activates MYC target genes in vivo . Thus, the mutagenic landscape of ecDNA contributes to genome instability and generates chimeric fusions of lncRNA and mRNA genes, selecting PVT1 5' region as a stabilizer of oncogene mRNAs.
Collapse
|
2
|
Dorney R, Reis-das-Mercês L, Schmitz U. Architects and Partners: The Dual Roles of Non-coding RNAs in Gene Fusion Events. Methods Mol Biol 2025; 2883:231-255. [PMID: 39702711 DOI: 10.1007/978-1-0716-4290-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Extensive research into gene fusions in cancer and other diseases has led to the discovery of novel biomarkers and therapeutic targets. Concurrently, various bioinformatics tools have been developed for fusion detection in RNA sequencing data, which, in the age of increasing affordability of sequencing, have delivered a large-scale identification of transcriptomic abnormalities. Historically, the focus of fusion transcript research was predominantly on coding RNAs and their resultant proteins, often overlooking non-coding RNAs (ncRNAs). This chapter discusses how ncRNAs are integral players in the landscape of gene fusions, detailing their contributions to the formation of gene fusions and their presence in chimeric transcripts. We delve into both linear and the more recently identified circular fusion RNAs, providing a comprehensive overview of the computational methodologies used to detect ncRNA-involved gene fusions. Additionally, we examine the inherent biases and limitations of these bioinformatics approaches, offering insights into the challenges and future directions in this dynamic field.
Collapse
Affiliation(s)
- Ryley Dorney
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Laís Reis-das-Mercês
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belem, PA, Brazil
| | - Ulf Schmitz
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
- Computational BioMedicine Lab, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Mohammad T, Zolotovskaia MA, Suntsova MV, Buzdin AA. Cancer fusion transcripts with human non-coding RNAs. Front Oncol 2024; 14:1415801. [PMID: 38919532 PMCID: PMC11196610 DOI: 10.3389/fonc.2024.1415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.
Collapse
Affiliation(s)
- Tharaa Mohammad
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Anton A. Buzdin
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Su Z, Cong B, Li X. Identification of a novel ITGAX::RN7SL2 fusion in acute myelocytic leukemia. Int J Lab Hematol 2024; 46:577-579. [PMID: 38450977 DOI: 10.1111/ijlh.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Zhan Su
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Beibei Cong
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaojuan Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Sánchez-Marín D, Silva-Cázares MB, Porras-Reyes FI, García-Román R, Campos-Parra AD. Breaking paradigms: Long non-coding RNAs forming gene fusions with potential implications in cancer. Genes Dis 2024; 11:101136. [PMID: 38292185 PMCID: PMC10825296 DOI: 10.1016/j.gendis.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 02/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nucleotides with dynamic regulatory functions. They interact with a wide range of molecules such as DNA, RNA, and proteins to modulate diverse cellular functions through several mechanisms and, if deregulated, they can lead to cancer development and progression. Recently, it has been described that lncRNAs are susceptible to form gene fusions with mRNAs or other lncRNAs, breaking the paradigm of gene fusions consisting mainly of protein-coding genes. However, their biological significance in the tumor phenotype is still uncertain. Therefore, their recent identification opens a new line of research to study their biological role in tumorigenesis, and their potential as biomarkers with clinical relevance or as therapeutic targets. The present study aimed to review the lncRNA fusions identified so far and to know which of them have been associated with a potential function. We address the current challenges to deepen their study as well as the reasons why they represent a future therapeutic window in cancer.
Collapse
Affiliation(s)
- David Sánchez-Marín
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04360, México
| | - Macrina Beatriz Silva-Cázares
- Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí (UASLP), Carretera a Cedral Km 5+600, Ejido San José de la Trojes, Matehuala, San Luis Potosí, C.P. 78760, México
| | - Fany Iris Porras-Reyes
- Servicio de Anatomía Patológica, Instituto Nacional de Cancerología (INCan), Niño Jesús, Tlalpan, Ciudad de México, C.P. 14080, México
| | - Rebeca García-Román
- Instituto de Salud Pública, Universidad Veracruzana (UV), Av. Dr Luis, Dr. Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, C.P. 91190, México
| | - Alma D. Campos-Parra
- Instituto de Salud Pública, Universidad Veracruzana (UV), Av. Dr Luis, Dr. Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, C.P. 91190, México
| |
Collapse
|
6
|
Tian S, Chen M, Jing W, Meng Q, Wu J. miR-1204 Positioning in 8q24.21 Involved in the Tumorigenesis of Colorectal Cancer by Targeting MASPIN. Protein Pept Lett 2024; 31:544-558. [PMID: 39082173 DOI: 10.2174/0109298665305114240718072029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Colorectal cancer remains to be the third leading cause of cancer mortality rates. Despite the diverse effects of the miRNA cluster located in PVT1 of 8q24.21 across various tumors, the specific biological function in colorectal cancer has not been clarified. METHODS The amplification of the miR-1204 cluster was analyzed with the cBioPortal database, while the expression and survival analysis of the miRNAs in the cluster were obtained from several GEO databases of colorectal cancer. To investigate the functional role of miR-1204 in colorectal cancer, overexpression and silencing experiments were performed by miR-1204 mimic and inhibitor transfection in colorectal cancer cell lines, respectively. Then, the effects of miR-1204 on cell proliferation were assessed through CCK-8, colony formation, and Edu assay. In addition, cell migration was evaluated using wound healing and Transwell assay. Moreover, candidate genes identified through RNA sequencing and predicted databases were identified and validated using PCR and western blot. A Dual-luciferase reporter experiment was conducted to identify MASPIN as the target gene of miR-1204. RESULTS In colorectal cancer, the miR-1204 cluster exhibited high amplification, and the expression levels of several cluster miRNAs were also significantly increased. Furthermore, miR-1204 was found to be significantly associated with disease-specific survival according to the analysis of GSE17536. Functional experiments demonstrated that transfection of miR-1204 mimic or inhibitor could enhance or decrease cancer cell proliferation and migration. MASPIN was identified as a target of miR-1204. Additionally, the overexpression of MASPIN partially rescued the effect of miR-1204 mimics on tumorigenic abilities in LOVO cells. CONCLUSION miR-1204 positioning in 8q24.21 promotes the proliferation and migration of colorectal cancer cells by targeting MASPIN.
Collapse
Affiliation(s)
- Simeng Tian
- Department of Surgery, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meilin Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Department of Pathology, XiaMen SuSong Hospital, Xia- Men, China
| | - Wanting Jing
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Qinghui Meng
- Department of Surgery, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Zhao X, van den Berg A, Winkle M, Koerts J, Seitz A, de Jong D, Rutgers B, van der Sluis T, Bakker E, Kluiver J. Proliferation-promoting roles of linear and circular PVT1 are independent of their ability to bind miRNAs in B-cell lymphoma. Int J Biol Macromol 2023; 253:126744. [PMID: 37689284 DOI: 10.1016/j.ijbiomac.2023.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Plasmacytoma Variant Translocation 1 (PVT1) is a long non-coding RNA located at 8q24.21 immediately downstream of MYC. Both the linear and circular PVT1 transcripts contribute to cancer pathogenesis by binding microRNAs. However, little is known about their roles in B-cell lymphoma. Here we studied their expression patterns, role in growth, and ability to bind miRNAs in B-cell lymphoma. Linear PVT1 transcripts were downregulated in B-cell cell lymphoma lines compared to germinal center B cells, while circPVT1 levels were increased. Two Hodgkin lymphoma cell lines had a homozygous deletion including the 5' region of the PVT1 locus, resulting in a complete lack of circPVT1 and 5' linear PVT1 transcripts. Inhibition of both linear and circular PVT1 decreased growth of Burkitt lymphoma, while the effects on Hodgkin lymphoma and diffuse large B cell lymphoma were less pronounced. Overexpression of circPVT1 promoted growth of B-cell lymphoma lacking or having low endogenous circPVT1 levels. Contrary to other types of cancer, linear and circular PVT1 transcripts did not interact with miRNAs in B-cell lymphoma. Overall, we showed an opposite expression pattern of linear and circular PVT1 in B-cell lymphoma. Their effect on growth was independent of their ability to bind miRNAs.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands.
| | - Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Tineke van der Sluis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Emke Bakker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
8
|
Mortlock SA, Asada MC, Soh PXY, Hsu WT, Lee C, Bennett PF, Taylor RM, Khatkar MS, Williamson P. Genomic Analysis of Lymphoma Risk in Bullmastiff Dogs. Vet Sci 2023; 10:703. [PMID: 38133254 PMCID: PMC10747964 DOI: 10.3390/vetsci10120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Lymphoma is the most common haematological malignancy affecting dogs and has a high incidence in the Bullmastiff breed. The aim of this study was to identify risk loci predisposing this breed to the disease. The average age of lymphoma diagnosis in 55 cases was less than 6 years, similar to the median age of 64 cases from our clinical and pathology databases. When fine-scale population structure was explored using NETVIEW, cases were distributed throughout an extended pedigree. When genotyped cases (n = 49) and dogs from the control group (n = 281) were compared in a genome-wide association analysis of lymphoma risk, the most prominent associated regions were detected on CFA13 and CFA33. The top SNPs in a 5.4 Mb region on CFA13 were significant at a chromosome-wide level, and the region was fine-mapped to ~1.2 Mb (CFA13: 25.2-26.4 Mb; CanFam3.1) with four potential functional candidates, including the MYC proto-oncogene bHLH transcription factor (MYC) and a region syntenic with the human and mouse lncRNA Pvt1 oncogene (PVT1). A 380 Kb associated region at CFA33: 7.7-8.1 Mb contained the coding sequence for SUMO specific peptidase7 (SENP7) and NFK inhibitor zeta (NFKBIZ) genes. These genes have annotations related to cancer, amongst others, and both have functional links to MYC regulation. Genomic signatures identified in lymphoma cases suggest that increased risk contributed by the regions identified by GWAS may complement a complex predisposing genetic background.
Collapse
Affiliation(s)
- Sally A. Mortlock
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Monica C. Asada
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wei-Tse Hsu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Carol Lee
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Peter F. Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Rosanne M. Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Peter Williamson
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| |
Collapse
|
9
|
Barford RG, Whittle E, Weir L, Fong FC, Goodman A, Hartley HE, Allinson LM, Tweddle DA. Use of Optical Genome Mapping to Detect Structural Variants in Neuroblastoma. Cancers (Basel) 2023; 15:5233. [PMID: 37958407 PMCID: PMC10647738 DOI: 10.3390/cancers15215233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Neuroblastoma is the most common extracranial solid tumour in children, accounting for 15% of paediatric cancer deaths. Multiple genetic abnormalities have been identified as prognostically significant in neuroblastoma patients. Optical genome mapping (OGM) is a novel cytogenetic technique used to detect structural variants, which has not previously been tested in neuroblastoma. We used OGM to identify copy number and structural variants (SVs) in neuroblastoma which may have been missed by standard cytogenetic techniques. METHODS Five neuroblastoma cell lines (SH-SY5Y, NBLW, GI-ME-N, NB1691 and SK-N-BE2(C)) and two neuroblastoma tumours were analysed using OGM with the Bionano Saphyr® instrument. The results were analysed using Bionano Access software and compared to previous genetic analyses including G-band karyotyping, FISH (fluorescent in situ hybridisation), single-nucleotide polymorphism (SNP) array and RNA fusion panels for cell lines, and SNP arrays and whole genome sequencing (WGS) for tumours. RESULTS OGM detected copy number abnormalities found using previous methods and provided estimates for absolute copy numbers of amplified genes. OGM identified novel SVs, including fusion genes in two cell lines of potential clinical significance. CONCLUSIONS OGM can reliably detect clinically significant structural and copy number variations in a single test. OGM may prove to be more time- and cost-effective than current standard cytogenetic techniques for neuroblastoma.
Collapse
Affiliation(s)
- Ruby G. Barford
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Emily Whittle
- Newcastle Genetics Laboratory, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK; (E.W.); (L.W.); (A.G.)
| | - Laura Weir
- Newcastle Genetics Laboratory, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK; (E.W.); (L.W.); (A.G.)
| | - Fang Chyi Fong
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Angharad Goodman
- Newcastle Genetics Laboratory, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK; (E.W.); (L.W.); (A.G.)
| | - Hannah E. Hartley
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Lisa M. Allinson
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Deborah A. Tweddle
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
- Great North Children’s Hospital, Newcastle upon Tyne NE1 4LP, UK
| |
Collapse
|
10
|
Arshadi A, Tolomeo D, Venuto S, Storlazzi CT. Advancements in Focal Amplification Detection in Tumor/Liquid Biopsies and Emerging Clinical Applications. Genes (Basel) 2023; 14:1304. [PMID: 37372484 PMCID: PMC10298061 DOI: 10.3390/genes14061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Focal amplifications (FAs) are crucial in cancer research due to their significant diagnostic, prognostic, and therapeutic implications. FAs manifest in various forms, such as episomes, double minute chromosomes, and homogeneously staining regions, arising through different mechanisms and mainly contributing to cancer cell heterogeneity, the leading cause of drug resistance in therapy. Numerous wet-lab, mainly FISH, PCR-based assays, next-generation sequencing, and bioinformatics approaches have been set up to detect FAs, unravel the internal structure of amplicons, assess their chromatin compaction status, and investigate the transcriptional landscape associated with their occurrence in cancer cells. Most of them are tailored for tumor samples, even at the single-cell level. Conversely, very limited approaches have been set up to detect FAs in liquid biopsies. This evidence suggests the need to improve these non-invasive investigations for early tumor detection, monitoring disease progression, and evaluating treatment response. Despite the potential therapeutic implications of FAs, such as, for example, the use of HER2-specific compounds for patients with ERBB2 amplification, challenges remain, including developing selective and effective FA-targeting agents and understanding the molecular mechanisms underlying FA maintenance and replication. This review details a state-of-the-art of FA investigation, with a particular focus on liquid biopsies and single-cell approaches in tumor samples, emphasizing their potential to revolutionize the future diagnosis, prognosis, and treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (D.T.); (S.V.)
| |
Collapse
|
11
|
Haas BJ, Dobin A, Ghandi M, Van Arsdale A, Tickle T, Robinson JT, Gillani R, Kasif S, Regev A. Targeted in silico characterization of fusion transcripts in tumor and normal tissues via FusionInspector. CELL REPORTS METHODS 2023; 3:100467. [PMID: 37323575 PMCID: PMC10261907 DOI: 10.1016/j.crmeth.2023.100467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.
Collapse
Affiliation(s)
- Brian J. Haas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | | | - Anne Van Arsdale
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Timothy Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James T. Robinson
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Kasif
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
12
|
Dal Molin A, Tretti Parenzan C, Gaffo E, Borin C, Boldrin E, Meyer LH, te Kronnie G, Bresolin S, Bortoluzzi S. Discovery of fusion circular RNAs in leukemia with KMT2A::AFF1 rearrangements by the new software CircFusion. Brief Bioinform 2022; 24:6965906. [PMID: 36585787 PMCID: PMC9851293 DOI: 10.1093/bib/bbac589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 01/01/2023] Open
Abstract
Chromosomal translocations in cancer genomes, key players in many types of cancers, generate chimeric proteins that drive oncogenesis. Genomes with chromosomal rearrangements can also produce fusion circular RNAs (f-circRNAs) by backsplicing of chimeric transcripts, as first shown in leukemias with PML::RARα and KMT2A::MLLT3 translocations and later in solid cancers. F-circRNAs contribute to the oncogenic processes and reinforce the oncogenic activity of chimeric proteins. In leukemia with KMT2A::AFF1 (MLL::AF4) fusions, we previously reported specific alterations of circRNA expression, but nothing was known about f-circRNAs. Due to the presence of two chimeric sequences, fusion and backsplice junctions, the identification of f-circRNAs with available tools is challenging, possibly resulting in the underestimation of this RNA species, especially when the breakpoint is not known. We developed CircFusion, a new software tool to detect linear fusion transcripts and f-circRNAs from RNA-seq data, both in samples for which the breakpoints are known and when the information about the joined exons is missing. CircFusion can detect linear and circular chimeric transcripts deriving from the main and reciprocal translocations also in the presence of multiple breakpoints, which are common in malignant cells. Benchmarking tests on simulated and real datasets of cancer samples with previously experimentally determined f-circRNAs showed that CircFusion provides reliable predictions and outperforms available methods for f-circRNA detection. We discovered and validated novel f-circRNAs in acute leukemia harboring KMT2A::AFF1 rearrangements, leading the way to future functional studies aimed to unveil their role in this malignancy.
Collapse
Affiliation(s)
- Anna Dal Molin
- Corresponding authors: Anna Dal Molin, Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209. ; Stefania Bortoluzzi, Associate Professor of Applied Biology.Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209.
| | | | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Cristina Borin
- Department of Molecular Medicine, University of Padova, Padova, Italy,Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, IRP-Istituto di Ricerca Pediatrica, Padova, Italy
| | - Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany,Department of Molecular Medicine, University of Padova, Padova, Italy,Department of Biology, University of Padova, Padova, Italy
| | - Lueder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | | | - Stefania Bortoluzzi
- Corresponding authors: Anna Dal Molin, Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209. ; Stefania Bortoluzzi, Associate Professor of Applied Biology.Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209.
| |
Collapse
|
13
|
Tolomeo D, Traversa D, Venuto S, Ebbesen KK, García Rodríguez JL, Tamma G, Ranieri M, Simonetti G, Ghetti M, Paganelli M, Visci G, Liso A, Kok K, Muscarella LA, Fabrizio FP, Frassanito MA, Lamanuzzi A, Saltarella I, Solimando AG, Fatica A, Ianniello Z, Marsano RM, Palazzo A, Azzariti A, Longo V, Tommasi S, Galetta D, Catino A, Zito A, Mazza T, Napoli A, Martinelli G, Kjems J, Kristensen LS, Vacca A, Storlazzi CT. circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer. Genes Chromosomes Cancer 2022; 62:377-391. [PMID: 36562080 DOI: 10.1002/gcc.23121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Debora Traversa
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Karoline K Ebbesen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Grazia Tamma
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Grazia Visci
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Maria Antonia Frassanito
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Vito Longo
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Domenico Galetta
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Annamaria Catino
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alfredo Zito
- Pathology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Alessandro Napoli
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Hung KL, Mischel PS, Chang HY. Gene regulation on extrachromosomal DNA. Nat Struct Mol Biol 2022; 29:736-744. [PMID: 35948767 PMCID: PMC10246724 DOI: 10.1038/s41594-022-00806-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) is prevalent in human cancer and is associated with poor outcomes. Clonal, megabase-sized circular ecDNAs in cancer are distinct from nonclonal, small sub-kilobase-sized DNAs that may arise during normal tissue homeostasis. ecDNAs enable profound changes in gene regulation beyond copy-number gains. An emerging principle of ecDNA regulation is the formation of ecDNA hubs: micrometer-sized nuclear structures of numerous copies of ecDNAs tethered by proteins in spatial proximity. ecDNA hubs enable cooperative and intermolecular sharing of DNA regulatory elements for potent and combinatorial gene activation. The 3D context of ecDNA shapes its gene expression potential, selection for clonal heterogeneity among ecDNAs, distribution through cell division, and reintegration into chromosomes. Technologies for studying gene regulation and structure of ecDNA are starting to answer long-held questions on the distinct rules that govern cancer genes beyond chromosomes.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and ChEM-H, Stanford University, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Liu S, Sun Z, Zhu M, Liu M, Wei M, Pan X, Huang S. Prognostic value and potential mechanism of long non-coding RNA Lnc-SMIM20-1 in acute myeloid leukemia. Expert Rev Anticancer Ther 2022; 22:875-885. [PMID: 35894677 DOI: 10.1080/14737140.2022.2093720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a common hematologic malignancy with high heterogeneity and poor prognosis. Although long non-coding RNAs (lncRNAs) have been used as biomarkers for tumors, the clinical relevance of numerous lncRNAs in AML remains to be investigated. RESEARCH DESIGN AND METHODS Differentially expressed lncRNAs between AML and normal peripheral blood samples were identified using DESeq2. Pan-cancer analysis was performed by GEPIA tool. Kaplan-Meier survival curve was applied for prognosis analysis. KEGG pathway analysis and GSEA were used for functional enrichment. The ceRNA network was constructed by GDCRNAtools. RESULTS Lnc-SMIM20-1 was most highly expressed in AML and up-regulated in the TCGA-AML cohort compared to normal tissues. Patients with high expression of Lnc-SMIM20-1 had poor overall prognosis both in the TCGA adult AML cohort and the TARGET pediatric AML cohort, no matter whether they were treated with chemotherapy or allo-HSCT. Lnc-SMIM20-1 might participate in cancer-associated signaling pathways and immune-related signaling pathways by interacting with four microRNAs and 20 mRNAs. CONCLUSION Lnc-SMIM20-1 was up-regulated in AML acting as a stable poor prognostic factor. The prognostic impact of Lnc-SMIM20-1 cannot be overcome by allo-HSCT. Our findings provide insight into the clinical relevance of Lnc-SMIM20-1 in AML; aiming to progress the development of novel therapeutics.
Collapse
Affiliation(s)
- Sha Liu
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Ziyi Sun
- Department of Oncology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, China
| | - Mengyuan Zhu
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Minling Liu
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Wei
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaofen Pan
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shan Huang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Wu F, Zhu Y, Zhou C, Gui W, Li H, Lin X. Regulation mechanism and pathogenic role of lncRNA plasmacytoma variant translocation 1 (PVT1) in human diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
17
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
18
|
Li P, Qiao G, Lu J, Ji W, Gao C, Qi F. PVT1 is a prognostic marker associated with immune invasion of bladder urothelial carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:169-190. [PMID: 34902986 DOI: 10.3934/mbe.2022009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan-Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P < 0.05) and overall survival (OS P < 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Gangjie Qiao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
19
|
Hung KL, Yost KE, Xie L, Shi Q, Helmsauer K, Luebeck J, Schöpflin R, Lange JT, Chamorro González R, Weiser NE, Chen C, Valieva ME, Wong ITL, Wu S, Dehkordi SR, Duffy CV, Kraft K, Tang J, Belk JA, Rose JC, Corces MR, Granja JM, Li R, Rajkumar U, Friedlein J, Bagchi A, Satpathy AT, Tjian R, Mundlos S, Bafna V, Henssen AG, Mischel PS, Liu Z, Chang HY. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 2021; 600:731-736. [PMID: 34819668 PMCID: PMC9126690 DOI: 10.1038/s41586-021-04116-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Liangqi Xie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Berkeley, CA, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Konstantin Helmsauer
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Robert Schöpflin
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joshua T Lange
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rocío Chamorro González
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Natasha E Weiser
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Celine Chen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria E Valieva
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivy Tsz-Lo Wong
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Connor V Duffy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Tang
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - John C Rose
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey M Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jordan Friedlein
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Berkeley, CA, USA
| | - Stefan Mundlos
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center DKFZ, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul S Mischel
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|