1
|
Chen XY, Xiao XR, Zhang Y, Zhang ZC, Zhang DS, Liu Z, Lin XL. Comparative Mitogenomic Analyses of Psectrocladius (Diptera: Chironomidae). INSECTS 2025; 16:420. [PMID: 40332987 PMCID: PMC12027813 DOI: 10.3390/insects16040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
Psectrocladius, a genus within the species-rich subfamily Orthocladiinae (Diptera: Chironomidae), remains poorly resolved in molecular phylogenetics due to limited available molecular data. Here, we sequenced and analyzed the complete mitogenomes of five Psectrocladius species, using two Rheocricotopus species as outgroups. Our results reveal that the mitogenomes of Psectrocladius are structurally conserved and retain a presumed ancestral gene order. The nucleotide composition of these newly generated mitogenomes exhibits a pronounced A + T bias, which is characteristic of typical insect mitogenomes. The substitution rates, estimated using Ka/Ks ratios, indicate that all protein-coding genes are under purifying selection. The strongest purifying selection pressure was observed in the CO1 gene, while the weakest was in the ND5 gene. Both the maximum likelihood and Bayesian inference trees consistently show the following topology: ((((P. schlienzi + P. bisetus) + P. barbimanus) + P. oligosetus) + P. aquatronus). This study provides key insights into chironomid mitogenomes and their gene properties, offering valuable reference data for future research.
Collapse
Affiliation(s)
- Xue-Yao Chen
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (X.-Y.C.); (X.-R.X.); (Y.Z.); (Z.-C.Z.); (D.-S.Z.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Xiu-Ru Xiao
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (X.-Y.C.); (X.-R.X.); (Y.Z.); (Z.-C.Z.); (D.-S.Z.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Zhang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (X.-Y.C.); (X.-R.X.); (Y.Z.); (Z.-C.Z.); (D.-S.Z.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Zhi-Chao Zhang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (X.-Y.C.); (X.-R.X.); (Y.Z.); (Z.-C.Z.); (D.-S.Z.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Dong-Sheng Zhang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (X.-Y.C.); (X.-R.X.); (Y.Z.); (Z.-C.Z.); (D.-S.Z.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Liu
- Department of Stratigraphy and Paleontology, Geological Museum of China, Beijing 100034, China
- Laboratory of Geo-Specimens Study and Testing, Geological Museum of China, Beijing 100034, China
| | - Xiao-Long Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; (X.-Y.C.); (X.-R.X.); (Y.Z.); (Z.-C.Z.); (D.-S.Z.)
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Li SY, Chen MH, Sun L, Wang RH, Li CH, Gresens S, Li Z, Lin XL. New mitogenomes from the genus Cricotopus (Diptera: Chironomidae, Orthocladiinae): Characterization and phylogenetic implications. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22067. [PMID: 38014568 DOI: 10.1002/arch.22067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Cricotopus is a large and diverse genus of non-biting midges composed of several subgenera. Complete mitogenome sequences are available for very few Cricotopus species. The subgenus Pseudocricotopus unites species with unusual morphological structures in adult male and pupal stages, however, molecular methods are needed to verify the placement of this subgenus within Cricotopus. We obtained mitogenomes of C. (Pseudocricotopus) cf. montanus and nine other Cricotopus species for phylogenetic analysis, coupled with two Rheocricotopus species and one Synorthocladius species as outgroups. The structure of the mitogenome was similar among these Cricotopus species, exhibiting A+T bias and retaining ancestral gene order. Mutation rate, estimated as Ka/Ks, varied among genes, and was highest for ATP8 and lowest for COI. The phylogenetic relationships among species of Cricotopus, Rheocricotopus and Synorthocladius was reconstructed using Bayesian inference and maximum likelihood estimation. The phylogenetic trees confirmed placement of subgenus Pseudocricotopus, represented by Cricotopus cf. montanus, within Cricotopus. Our study increases the library of chironomid mitogenomes and provides insight into the properties of their constituent genes.
Collapse
Affiliation(s)
- Shu-Yi Li
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Meng-Han Chen
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Li Sun
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Rui-Hao Wang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Chen-Hong Li
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Susan Gresens
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Zhao Li
- China National Environmental Monitoring Centre, Beijing, China
| | - Xiao-Long Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Xiao ML, Yuan H, Li TJ, Chen B. Two New Mitogenomes of Bibionidae and Their Comparison within the Infraorder Bibionomorpha (Diptera). Genes (Basel) 2023; 14:1485. [PMID: 37510389 PMCID: PMC10378959 DOI: 10.3390/genes14071485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the worldwide distribution and rich diversity of the infraorder Bibionomorpha in Diptera, the characteristics of mitochondrial genomes (mitogenomes) are still little-known, and the phylogenetics and evolution of the infraorder remains controversial. In the present study, we report complete and annotated mitogenome sequences of Penthetria simplioipes and Plecia hardyi representing Bibionidae. This is the first report of the complete mitogenomes for the superfamily Bibionoidea. There are 37 genes in each of the complete mitogenomes of all 20 studied species from eight families of four superfamilies within infraorder Bibionomorpha. The Ka/Ks analysis suggests that all 13 PCGs have undergone purifying selection. The gene rearrangement events exist in some families (Keroplatidae, Sciaridae, and Cecidomyiidae) but not in Mycetophilidae in Sciaroidea and also in Scatopsoidea, Anisopodoidea, and Bibionoidea, which suggests that these rearrangement events are derived in the late period in the evolution of the Bibionomorpha. The phylogenetic analysis suggests the phylogenetic relationships of Scatopsoidea + (Anisopodoidea + (Bibionoidea + Sciaroidea)) in Bibionomorpha. The divergence time analysis suggests that Bibionomorpha originated in the Triassic, Scatopsoidea and Anisopodoidea in the late Triassic, Bibionoidea in the Jurassic, and Sciaroidea in the Jurassic to the Cretaceous. The work lays a base for the study of mitogenomes in Bibionomorpha but further work and broader taxon sampling are necessary for a better understanding of the phylogenetics and evolution of the infraorder.
Collapse
Affiliation(s)
- Mei-Ling Xiao
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Huan Yuan
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Ting-Jing Li
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Bin Chen
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
4
|
Xu Y, Zhang S, Chen Y, Wang G, Yang D, Zhang X. Contribution to the Knowledge of Dicranoptychini (Diptera, Tipuloidea, Limoniidae) in China, with the First Mitochondrial Genome of the Tribe and Its Phylogenetic Implications. INSECTS 2023; 14:535. [PMID: 37367351 DOI: 10.3390/insects14060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Dicranoptychini is a tribe in the subfamily Limoniinae (Diptera, Tipuloidea, and Limoniidae) and includes only the genus Dicranoptycha Osten Sacken, 1860. However, the species diversity of the tribe in China was seriously underestimated, and the taxonomic status of Dicranoptycha has long been controversial. In this study, types of Chinese Dicranoptycha species and specimens collected from several localities in China were examined, and the first mitochondrial (mt) genome of the tribe Dicranoptychini is presented. Two Dicranoptycha species, D. jiufengshana sp. nov. and D. shandongensis sp. nov., from China, are described and illustrated as new to science. A Palaearctic species, D. prolongata Alexander, 1938, is recorded in China for the first time. In addition, the complete mt genome of D. shandongensis sp. nov. is sequenced and annotated, indicating that it is a typical circular DNA molecule with a length of 16,157 bp and shows a similar gene order, nucleotide composition, and codon usage to mt genomes of other Tipuloidea species. The two pairs of repeat elements are found in its control region. Phylogenetic results confirm the sister-group relationship between Cylindrotomidae and Tipulidae, question the position of the genus Epiphragma Osten Sacken, 1860 in Limoniidae, and indicate that Dicranoptychini may be a basal lineage within Limoniinae.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning 530004, China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Shenglin Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaru Chen
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guoquan Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning 530004, China
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiao Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Kjærandsen J, Kerr PH, Lindemann JP, Kurina O. When details matter: Integrative revision of Holarctic Coelophthinia Edwards (Diptera, Mycetophilidae), including mapping of its mitogenome, leads to the description of four new pseudocryptic species. Biodivers Data J 2023; 11:e98741. [PMID: 38327291 PMCID: PMC10848816 DOI: 10.3897/bdj.11.e98741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Background The small genus Coelophthinia Edwards, 1941 of the subfamily Gnoristinae (Diptera, Mycetophilidae) is so far known to harbour four species from the Palaearctic, Nearctic and Neotropical Regions. Extensive DNA barcoding of fungus gnats of the family Mycetophilidae through the International Barcode of Life project (iBOL) have initiated integrative studies resulting in taxonomic upgrades and a better understanding of many species and their delimitation. The opportunity was also taken to describe the mitogenome of a member of Coelophthinia for the first time. New information The integrative studies give evidence for splitting the European species C.thoracica Edwards, 1941 into three different species. Four new species are described from the USA, Japan and the Nordic Region in Europe, Coelophthiniacirra Kerr sp. n., Coelophthiniaitoae Kurina sp. n., Coelophthinialata Kjaerandsen sp. n. and Coelophthinialoraasi Kjaerandsen sp. n., raising the number of Holarctic species from two to six. The mitogenome of Coelophthinialoraasi sp. n. is described and analysed.
Collapse
Affiliation(s)
- Jostein Kjærandsen
- UiT – The Arctic University of Norway, Tromsø, NorwayUiT – The Arctic University of NorwayTromsøNorway
| | - Peter H. Kerr
- California State Collection of Arthropods, Sacramento, United States of AmericaCalifornia State Collection of ArthropodsSacramentoUnited States of America
| | - Jon Peder Lindemann
- UiT – The Arctic University of Norway, Tromsø, NorwayUiT – The Arctic University of NorwayTromsøNorway
| | - Olavi Kurina
- Institute of Agricultural and Environmental Sciences, Tartu, EstoniaInstitute of Agricultural and Environmental SciencesTartuEstonia
| |
Collapse
|
6
|
Li SY, Zhao YM, Guo BX, Li CH, Sun BJ, Lin XL. Comparative Analysis of Mitogenomes of Chironomus (Diptera: Chironomidae). INSECTS 2022; 13:1164. [PMID: 36555075 PMCID: PMC9784984 DOI: 10.3390/insects13121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
(1) Background: Chironomids are biological indicators, playing an important role in monitoring and assessing the changes in water ecosystems. Mitochondrial genomes have been widely applied as a molecular marker to analyze the taxonomy and phylogeny of insects. However, knowledge of the mitogenomes of Chironomus species is scarce at present, which limits our understanding of the evolutionary relationships among Chironomus. (2) Methods: In our study, the mitogenomes and their basic structure of 12 Chironomus species and one Microchironomus species were newly sequenced. Combined with reported mitogenomes, a total of 15 mitogenomes of Chironomus were selected for a comparative mitogenomic analysis and phylogenetic reconstruction of Chironomus. (3) Results: Each mitogenome of the Chironomus species has the typical 37 genes and a control region. The basic structure of the whole mitogenomes of Chironomus species is relatively conservative, and the genetic arrangements stay the same as the ancestral mitogenome. (4) Conclusions: Our study enriches the library of mitogenomes of chironomids and provides a valuable resource for understanding the evolutionary history of Chironomus.
Collapse
Affiliation(s)
- Shu-Yi Li
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Min Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bing-Xin Guo
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Chen-Hong Li
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Bing-Jiao Sun
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Xiao-Long Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Trinca V, Uliana JVC, Ribeiro GKS, Torres TT, Monesi N. Characterization of the mitochondrial genomes of Bradysia hygida, Phytosciara flavipes and Trichosia splendens (Diptera: Sciaridae) and novel insights on the control region of sciarid mitogenomes. INSECT MOLECULAR BIOLOGY 2022; 31:482-496. [PMID: 35332955 DOI: 10.1111/imb.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Sciarids, also called "fungus gnats" are small, almost entirely dark-coloured insects. Sciarid larvae feed on different substrates and can infest agricultural crops and mushroom nurseries, causing economic losses. Of the 2174 Diptera mitogenome sequences currently available in GenBank, only eight are from the Sciaridae family, none of which are complete circular molecules. Here we describe the mitogenome sequences of three sciarid species: Phytosciara flavipes, Trichosia splendens and Bradysia hygida and provide novel insights on the control region of sciarid mitogenomes. The assembled mitogenomes range from 16,062 bp in P. flavipes to 17,095 bp in B. hygida. All 13 protein coding genes, 22 tRNAs and 2 rRNAs characteristic of insect mitogenomes were identified, but the sequence of the control region could not be determined. Experimental results suggest that the B. hygida control region is about 21 kb long resulting in a 37 kb long mitogenome which constitutes the largest insect mitochondrial genome described so far. Phylogenetic analysis using all Bibionomorpha mitogenome sequences available in GenBank strongly supports the Sciaridae monophyly and led to the identification of species and subfamily specific gene rearrangements. Our study extends the knowledge of this large and diverse insect family that includes agricultural pest species.
Collapse
Affiliation(s)
- Vitor Trinca
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João Vitor Cardoso Uliana
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Geyza Katrinny Sousa Ribeiro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tatiana Teixeira Torres
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Huang X, Chen B, Wei Z, Shi A. First Report of Complete Mitochondrial Genome in the Tribes Coomaniellini and Dicercini (Coleoptera: Buprestidae) and Phylogenetic Implications. Genes (Basel) 2022; 13:genes13061074. [PMID: 35741836 PMCID: PMC9222259 DOI: 10.3390/genes13061074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The complete mitochondrial genomes (mitogenomes) of the tribes Coomaniellini and Dicercini were sequenced and described in this study, including Coomaniella copipes (16,196 bp), Coomaniella dentata (16,179 bp), and Dicerca corrugata (16,276 bp). These complete mitogenomes are very similar in length and encoded 37 typical mitochondrial genes, including 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and 13 protein-coding genes (PCGs). Most of PCGs had typical ATN start codons and terminated with TAR. Among these mitogenomes, Leu2 (L2), Ile (I), Ser2 (S2), and Phe (F) were the four most frequently encoded amino acids. Moreover, phylogenetic analyses were performed based on three kinds of nucleotide matrixes (13 PCGs, 2 rRNAs, and 13 PCGs + 2 rRNAs) among the available sequenced species of the family Buprestidae using Bayesian inference and Maximum-likelihood methods. The results showed that a Chrysochroninae species interspersed in Buprestinae, and Coomaniellini is more closely related to Dicercini than Melanophilini. Moreover, the clade of Buprestidae was well separated from outgroups and the monophyly of Agrilinae is confirmed again. Our whole mitogenome phylogenetic results support that the genus Dicerca can be transferred from Chrysochroinae to Buprestinae; whether Dicercini can be completely transferred remains to be further verified after enriching samples. Our results have produced new complete mitogenomic data, which will provide information for future phylogenetic and taxonomic research.
Collapse
|
9
|
Wang Y, Liu C, Wang Q, Wu H, Huang J. The complete mitochondrial genome of Bradysia impatiens (Diptera: Sciaridae). Mitochondrial DNA B Resour 2022; 7:1140-1142. [PMID: 35756443 PMCID: PMC9225757 DOI: 10.1080/23802359.2022.2080594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Yang Wang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Caixia Liu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qingyun Wang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Hong Wu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Junhao Huang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Lin X, Liu Z, Yan L, Duan X, Bu W, Wang X, Zheng C. Mitogenomes provide new insights of evolutionary history of Boreheptagyiini and Diamesini (Diptera: Chironomidae: Diamesinae). Ecol Evol 2022; 12:e8957. [PMID: 35646319 PMCID: PMC9130564 DOI: 10.1002/ece3.8957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 01/11/2023] Open
Abstract
Mitogenomes have been widely used for phylogenetic reconstruction of various Dipteran groups, but specifically for chironomid, they have not been carried out to resolve the relationships. Diamesinae (Diptera: Chironomidae) are important bioindicators for freshwater ecosystem monitoring, but its evolutionary history remains uncertain for lack of information. Here, coupled with one previously published and 30 new mitogenomes of Diamesinae, we carried out comparative mitogenomic analysis and phylogenetic analysis. Mitogenomes of Diamesinae were conserved in structure, and all genes arranged in the same order as the ancestral insect mitogenome. All protein-coding genes in Diamesinae were under stronger purifying selection than those of other nonbiting midge species, which may exhibit signs of adaptation to life at cold living conditions. Phylogenetic analyses strongly supported the monophyly of Diamesinae, with Boreheptagyiini deeply nested within Diamesini. In addition, phylogenetic relationship of selected six genera was resolved, except Sympotthastia remained unstable. Our study revealed that the mitogenomes of Diamesinae are highly conserved, and they are practically useful for phylogenetic inference.
Collapse
Affiliation(s)
- Xiao‐Long Lin
- College of Life SciencesNankai UniversityTianjinChina
| | - Zheng Liu
- Geological Museum of ChinaBeijingChina
| | - Li‐Ping Yan
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Xin Duan
- Department of Plant ProtectionCollege of Horticulture and LandscapeTianjin Agricultural UniversityTianjinChina
| | - Wen‐Jun Bu
- College of Life SciencesNankai UniversityTianjinChina
| | - Xin‐Hua Wang
- College of Life SciencesNankai UniversityTianjinChina
| | | |
Collapse
|
11
|
Yi MR, Hsu KC, Gu S, He XB, Luo ZS, Lin HD, Yan YR. Complete mitogenomes of four Trichiurus species: A taxonomic review of the T.lepturus species complex. Zookeys 2022; 1084:1-26. [PMID: 35173516 PMCID: PMC8810657 DOI: 10.3897/zookeys.1084.71576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Four Trichiurus species, T.japonicus, T.lepturus, T.nanhaiensis, and T.brevis, from the coasts of the China Seas, have been identified and their entire mitochondrial genomes (mitogenomes) have been sequenced by next-generation sequencing technology. A comparative analysis of five mitogenomes was conducted, including the mitogenome of T.gangeticus. The mitogenomes contained 16.568-16.840 bp and encoded 36 typical mitochondrial genes (13 protein-coding, 2 ribosomal RNA-coding, and 21 transfer RNA-coding genes) and two typical noncoding control regions. Although tRNAPro is absent from Trichiurus mitogenomes, when compared with the 22 tRNAs reported in other vertebrates, the gene arrangements in the mitogenomes of the studied species are consistent with those in most teleost mitogenomes. The full-length sequences and protein-coding genes (PCGs) in the mitogenomes of the five species had obvious AT biases and negative GC skew values. Our study indicate that the specimens in the Indian Ocean are neither T.lepturus nor T.nanhaiensis but they are T.gangeticus; the Trichiurus species composition in the Indian Ocean is totally different from that in Pacific and Atlantic oceans; there are at least two Trichiurus species in Indian Ocean; and the worldwide systematics and diversity of the genus Trichiurus need to be reviewed.
Collapse
Affiliation(s)
- Mu-Rong Yi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Resources Big Data Center of South China Sea, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Kui-Ching Hsu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sui Gu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiong-Bo He
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhi-Sen Luo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hung-Du Lin
- The Affiliated School of National Tainan First Senior High School, Tainan 701, Taiwan
| | - Yun-Rong Yan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Resources Big Data Center of South China Sea, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China Sea, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
12
|
First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae). INSECTS 2022; 13:insects13020115. [PMID: 35206689 PMCID: PMC8875173 DOI: 10.3390/insects13020115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
Simple Summary Gene rearrangement is an additional type of data to support relationships of taxa, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. The concept to use mitochondrial gene rearrangements as phylogenetic markers has been proposed since the mid-1980s, the synapomorphic gene rearrangements have been identified from many lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae). Here, seven new mitogenomes of the genus Stenochironomus were sequenced and analyzed. Coupled with published data, phylogenetic analyses were performed within Chironominae. The present study showed that mitogenomes of Stenochironomus are showing a higher A+T bias than other chironomid species. A synapomorphic gene rearrangement that the gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ was identified within Stenochironomus, which is the first instance of mitochondrial gene rearrangement discovered in the Chironomidae. The monophyly of the genus Stenochironomus was strongly supported by mitogenomes. Our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding synapomorphic gene rearrangements. Abstract (1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The synapomorphic gene rearrangements have been identified across multiple orders and at many different taxonomic levels, supporting the monophyletic or systematic relationships of related lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae); (2) methods: in this study, the complete mitogenomes of seven Stenochironomus species were sequenced and analyzed for the first time; (3) results: each mitogenome of Stenochironomus contains 37 typical genes and a control region. The whole mitogenomes of Stenochironomus species exhibit a higher A+T bias than other published chironomid species. The gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ in all the seven mitogenomes of Stenochironomus, which might be act as a synapomorphy of the genus, supporting the monophyletic of Stenochironomus species. In addition, another derived gene cluster: trnA-trnG-ND3-trnR exists in Stenochironomus tobaduodecimus. The derived gene orders described above are the first case of mitochondrial gene rearrangement in Chironomidae. Coupled with published data, phylogenetic relationships were reconstructed within Chironominae, and strongly supported the monophyly of Stenochironomus; (4) conclusions: our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding the synapomorphic gene rearrangements.
Collapse
|
13
|
|