1
|
Menon AV, Song B, Chao L, Sriram D, Chansky P, Bakshi I, Ulianova J, Li W. Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology. Front Genome Ed 2025; 7:1565387. [PMID: 40292231 PMCID: PMC12021818 DOI: 10.3389/fgeed.2025.1565387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
The CRISPR system has transformed many research areas, including cancer and immunology, by providing a simple yet effective genome editing system. Its simplicity has facilitated large-scale experiments to assess gene functionality across diverse biological contexts, generating extensive datasets that boosted the development of computational methods and machine learning/artificial intelligence applications. Integrating CRISPR with single-cell technologies has further advanced our understanding of genome function and its role in many biological processes, providing unprecedented insights into human biology and disease mechanisms. This powerful combination has accelerated AI-driven analyses, enhancing disease diagnostics, risk prediction, and therapeutic innovations. This review provides a comprehensive overview of CRISPR-based genome editing systems, highlighting their advancements, current progress, challenges, and future opportunities, especially in cancer and immunology.
Collapse
Affiliation(s)
- A. Vipin Menon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Lumen Chao
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Diksha Sriram
- The George Washington University, Washington, DC, DC, United States
| | - Pamela Chansky
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Ishnoor Bakshi
- The George Washington University, Washington, DC, DC, United States
| | - Jane Ulianova
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| |
Collapse
|
2
|
Ge G, Li D, Ling Q, Xu L, Ata EB, Wang X, Li K, Hao W, Gong Q, Li J, Shi K, Leng X, Du R. IRF7-deficient MDBK cell based on CRISPR/Cas9 technology for enhancing IBRV replication. Front Microbiol 2024; 15:1483527. [PMID: 39691910 PMCID: PMC11649632 DOI: 10.3389/fmicb.2024.1483527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious bovine rhinotracheitis (IBR), characterized by acute respiratory lesions in cattle, is a major infectious disease caused by bovine alphaherpesvirus-1 (BoAHV-1). Control of this disease is primarily depending on vaccination. Madin-Darby bovine kidney cells (MDBK) being the main host cells and the important production platform for IBR vaccines. However, innate immune genes inhibit viral replication. Accordingly, the aim of this study was developing of IRF7 gene deleted MDBK cells to facilitate the production of high-titer vaccines. The CRISPR/Cas9 technology was used to knock out the IRF7 gene in MDBK cells and the impact on virus replication was examined using virus growth curves, CCK-8 assays, cell scratch assays, and qPCR. The knockout of the IRF7 gene in MDBK cells led to an increased replication capacity of IBRV and a significant reduction in type I interferons expression, specifically IFN-α and IFN-β. This indicates that IRF7 -/-MDBK cell lines can effectively result in production of IBRV with high-titer, which will enhance the development of inactivated or attenuated vaccines.
Collapse
Affiliation(s)
- Guiyang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongli Li
- Wengniute Banner Agriculture and Animal Husbandry Bureau, Chifeng, China
| | - Qian Ling
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Lihui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Emad Beshir Ata
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Xiaolin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keyan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wen Hao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Sun M, Tang H, Xiao T, Li Y, Li Y. ANAX4 is a downstream molecule of LGP2 and promotes GCRV proliferation. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109861. [PMID: 39216711 DOI: 10.1016/j.fsi.2024.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This study explored the key molecules and signal pathways in the pathogenesis of grass carp reovirus (GCRV). Using immunoprecipitation mass spectrometry and Co-IP validation, the protein CiANXA4 was identified which interacts indirectly with CiLGP2. CiANXA4 encodes 321 amino acids, including 4 ANX domains. To explore the role of CiANXA4 in the anti-GCRV immune response, we used overexpression and siRNA knockdown in cells. The results showed that overexpression of the CiANXA4 gene significantly increased the mRNA content of vp2 and vp7 in GCRV-infected cells, and the virus titer greatly increased. Knockdown of CiANXA4 significantly inhibited the mRNA levels of vp2 and vp7, and the protein levels of viral protein VP7 also significantly decreased. This suggests that CiANXA4 promotes viral proliferation. Further, we demonstrate that the ANX3 and ANX4 domains are key domains that limit CiANXA4 function by constructing domain-deletion mutants. Finally, we investigated the relationship between CiLGP2 and CiANXA4. RT-PCR and Western blot results showed that CiLGP2 mRNA and protein expression levels were not affected by CiANXA4 overexpression. In contrast, overexpression of CiLGP2 resulted in significant reductions in CiANXA4 mRNA and protein levels. This suggests that the function of CiANXA4 is restricted by CiLGP2, and CiANXA4 is a downstream molecule of CiLGP2. These results reveal that CiANXA4 plays a critical role in the anti-GCRV innate immune response of grass carp, and provides new targets and strategies to develop antiviral drugs and improve disease resistance in grass carp.
Collapse
Affiliation(s)
- Mingxue Sun
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Tang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoguo Li
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China.
| | - Yilin Li
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Zahedipour F, Zahedipour F, Zamani P, Jaafari MR, Sahebkar A. Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications. Virus Res 2024; 341:199314. [PMID: 38211734 PMCID: PMC10825633 DOI: 10.1016/j.virusres.2024.199314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The CRISPR/Cas system, identified as a type of bacterial adaptive immune system, have attracted significant attention due to its remarkable ability to precisely detect and eliminate foreign genetic material and nucleic acids. Expanding upon these inherent capabilities, recent investigations have unveiled the potential of reprogrammed CRISPR/Cas 9, 12, and 13 systems for treating viral infections associated with human diseases, specifically targeting DNA and RNA viruses, respectively. Of particular interest is the RNA virus responsible for the recent global outbreak of coronavirus disease 2019 (COVID-19), which presents a substantial public health risk, coupled with limited efficacy of current prophylactic and therapeutic techniques. In this regard, the utilization of CRISPR/Cas technology offers a promising gene editing approach to overcome the limitations of conventional methods in managing viral infections. This comprehensive review provides an overview of the latest CRISPR/Cas-based therapeutic and vaccine strategies employed to combat human viral infections. Additionally, we discuss significant challenges and offer insights into the future prospects of this cutting-edge gene editing technology.
Collapse
Affiliation(s)
- Farzaneh Zahedipour
- Microbiology Department, Medical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Fatemeh Zahedipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|