1
|
Zhu X, Cui Z, Li S, She Y, Wu Z. ADAMTSL2 is an independent predictor for the prognosis of gastric cancer. Discov Oncol 2025; 16:570. [PMID: 40252157 PMCID: PMC12009256 DOI: 10.1007/s12672-025-02259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/28/2025] [Indexed: 04/21/2025] Open
Abstract
AIMS To explore novel biomarkers capable of predicting the prognosis of gastric cancer (GC) and investigate the mechanisms underlying the development of GC. METHODS Firstly, differentially expressed genes (DEGs) in GC tumors and adjacent tissues were analyzed using transcriptome sequencing data. Then, the DEGs significantly associated with the prognosis of GC were selected. From this subset, genes with high protein expression levels in tumor tissues were focused. Multivariate hazard analysis was performed to further identify DEGs with independent prognostic value for GC patients. Eventually, the potential mechanisms involving DEGs that underlie the development of GC were investigated. RESULTS Altogether, 25 previously DEGs that have not been reported before were discovered in the context of GC. Among these genes, ADAMTSL2, DSCC1, COL5A3, F2RL2, GRIN2D, IGSF6, IER5L, PLA2G7, PODNL1, RCN3 and RTN4RL2 were significantly associated with the overall survival, first progression and post progression survival of GC patients. Moreover, protein levels of ADAMTSL2, COL5A3, DSCC1, GRIN2D, PODNL1 and RCN3 were consistently highly expressed in clinical GC specimens. Furthermore, multivariate hazard analysis identified ADAMTSL2 as an independent predictor of GC prognosis. Further exploration revealed a potential regulatory connection between ADAMTSL2 and hsa-miR-7-2-3p. hsa-miR-7-2-3p was significantly down-regulated in GC and GC patients with low expression of hsa-miR-7 had a poor overall survival. Additionally, ADAMTSL2 was significantly co-expressed with key molecules (NOTCH1, NOTCH3, NOTCH4 and HEY1) in Notch signaling pathway. CONCLUSIONS ADAMTSL2 stands out as an independent predictor for the prognosis of GC and may play a crucial pathological role in the development of GC.
Collapse
Affiliation(s)
- Xiuling Zhu
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Zhongyuan Cui
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Shasha Li
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Yingzhen She
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Zhixian Wu
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China.
| |
Collapse
|
2
|
Lotfinaghsh A, Imam A, Pompian A, Stitziel NO, Javaheri A. Clinical Insights from Proteomics in Heart Failure. Curr Heart Fail Rep 2025; 22:12. [PMID: 40063168 DOI: 10.1007/s11897-025-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/13/2025]
Abstract
PURPOSE OF REVIEW The pathophysiology of heart failure (HF), a complex and heterogenous condition, remains to be fully understood. Troponin and b-type natriuretic peptide are the only biomarkers that are utilized in clinical practice for HF clinical management. Recent advances in proteomics present a powerful tool to identify risk markers and ultimately, potential molecular mechanisms underlying HF pathogenesis. Herein, we explore traditional and novel heart biomarkers, highlighting their potential role in the pathogenesis of HF. RECENT FINDINGS Recent proteomic analyses have identified numerous proteins including Galectin-3, sST2, GDF-15, FGF21, Endotrophin, THSB-2, ADAMSTL, SVEP1, and anthracycline that are associated with clinical outcomes in HF. These biomarkers are not presently utilized in HF management but may be useful in the future for prediction of death or HF hospitalization. While traditional biomarkers remain essential, proteomic strategies have revealed additional targets that require further mechanistic exploration. Future research should focus on validating these biomarkers and translating proteomic insights into clinical practice to enhance HF management.
Collapse
Affiliation(s)
- Aynaz Lotfinaghsh
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adnan Imam
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander Pompian
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- John Cochran VA Hospital, St Louis, MO, USA.
| |
Collapse
|
3
|
Duzenli T, Uysal BS, Ulas B, Kayhan G. Geleophysic dysplasia and Weill-Marchesani syndrome: ADAMTSL2 a possible common gene. Ophthalmic Genet 2024; 45:499-505. [PMID: 39044700 DOI: 10.1080/13816810.2024.2358973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Geleophysic dysplasia (GD) and Weill-Marchesani syndrome (WMS) are two rare genetic disorders that are classified as acromelic dysplasias and have many common features that overlap clinically and genetically in some patients. Both diseases are characterized by acromelic features, including short stature, brachydactyly, joint limitations, and cardiac involvement. WMS is distinguished from GD mainly by ocular abnormalities, including high myopia, microspherophakia, ectopia lentis, and glaucoma and the absence of the life-threatening airway stenosis and early lethality. These two syndromes are allelic diseases of the FBN1 gene, with the gene families including A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) and latent transforming growth factor-beta-binding protein (LTBP). Although the ADAMTSL2 gene has been associated only with GD within the acromelic dysplasias, there have been reports of patients with ADAMTSL2-related GD exhibiting ocular abnormalities that resemble WMS. METHODS AND RESULTS We present a 24-year-old female patient with microspherophakia, ectopia lentis, myopia, short stature, joint stiffness, thick skin, short hands and feet, and cardiac valve disease consistent with WMS. The virtual panel analysis, including WMS and GD-related genes, revealed a homozygous c.493 G>A (p.Ala165Thr) variant in the ADAMTSL2 gene (NM_014694.4), which has been previously reported in a geleophysic dysplasia patient. CONCLUSIONS Mounting evidence suggests that GD and WMS may be allelic diseases of the ADAMTSL2 gene.
Collapse
Affiliation(s)
- Tarik Duzenli
- Faculty of Medicine, Department of Medical Genetics, Gazi University, Ankara, Turkey
| | - Betul Seher Uysal
- Faculty of Medicine, Department of Ophthalmology, Gazi University, Ankara, Turkey
| | - Berkay Ulas
- Faculty of Medicine, Department of Ophthalmology, Gazi University, Ankara, Turkey
| | - Gulsum Kayhan
- Faculty of Medicine, Department of Medical Genetics, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Wang YP, Qin SL, Yang S, Xu YF, Han PF, Liu AH, Hou KD, He JP. Association of IL‑6 and MMP‑3 gene polymorphisms with adolescent idiopathic scoliosis: A systematic review and meta‑analysis. Exp Ther Med 2024; 27:267. [PMID: 38756907 PMCID: PMC11097290 DOI: 10.3892/etm.2024.12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
The pathogenesis of adolescent idiopathic scoliosis (AIS) remains unclear. It has been found that interleukin-6 (IL-6) rs1800795 locus and matrix metalloproteinase-3 (MMP-3) rs3025058 locus gene polymorphisms may be associated with AIS susceptibility, which has been controversial and needs to be further confirmed by updated meta-analysis. The aim of the present study was to investigate the association of MMP-3 rs3025058 and IL-6 rs1800795 single nucleotide polymorphisms (SNPs) with susceptibility to AIS. All relevant articles that met the criteria were retrieved and included, and the publication dates were limited from January 2005 to December 2023. The allele frequencies and different genotype frequencies of IL-6 rs1800795 and MMP-3 rs3025058 loci in each study were extracted and statistically analyzed by ReviewManager 5.4 software, and the odds ratio (OR) and 95% confidence interval (95% CI) of different genetic models were calculated. The results of the meta-analysis showed that there was no significant association between the gene polymorphism of IL-6 rs1800795 locus and the pathogenesis of AIS. The allele 5A and genotype 5A5A of MMP-3 rs3025058 SNP were associated with AIS susceptibility (5A vs. 6A, OR=1.18; 95% CI, 1.04-1.33; 5A5A vs. 6A6A, OR=1.65; 95% CI, 1.23-2.21; and 5A5A vs. 5A6A + 6A6A, OR=1.54; 95% CI, 1.19-1.99). Results of subgroup analysis revealed that the allele 5A and genotype 5A5A of MMP-3 rs3025058 SNP were associated with AIS susceptibility in the Caucasian population, and the susceptibility of AIS was associated with the genotype 5A5A of MMP-3 rs3025058 SNP in an Asian population. There was no significant association between the gene polymorphism of IL-6 rs1800795 locus and the pathogenesis of AIS, while the allele 5A of MMP-3 rs3025058 locus was associated with the susceptibility to AIS, especially in the Caucasian population.
Collapse
Affiliation(s)
- Yue-Peng Wang
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| | - Shi-Lei Qin
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Su Yang
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yun-Feng Xu
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Peng-Fei Han
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ai-Hua Liu
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| | - Ke-Dong Hou
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| | - Jian-Ping He
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| |
Collapse
|
5
|
Pizones J, Chang DG, Suk SI, Izquierdo E. Current biomechanical theories on the etiopathogenesis of idiopathic scoliosis. Spine Deform 2024; 12:247-255. [PMID: 37975988 DOI: 10.1007/s43390-023-00787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE There is great controversy about the etiologic origin of adolescent idiopathic scoliosis. Multiple theories have been suggested, including metabolic aspects, endocrine dysfunction, neurological central abnormalities, genetic predisposition and epigenetic factors involved in the development of scoliosis. However, there has always been speculations based on human biomechanical behavior. METHODS In this article, we performed a literature review on the biomechanical traits of human posture, and the proposed theories that explain the special characteristics present in idiopathic scoliosis. RESULTS The current theory on the etiopathogeneis of AIS suggests that dorsally directed shear loads acting on a preexisting axial plane rotation, in a posteriorly inclined sagittal plane of a growing patient, together with disc maturation, collagen quality at this phase of development and immaturity of proprioception, is the perfect scenario to spark rotational instability and create the three-dimensional deformity that defines idiopathic scoliosis. CONCLUSION The unique spinal alignment of human bipedalism, gravity and muscle forces acting straight above the pelvis to preserve an upright balance, and the instability of the soft tissue in a period of growth development, is an appealing cocktail to try to explain the genesis of this condition in humans.
Collapse
Affiliation(s)
- Javier Pizones
- Department of Orthopedic Surgery, Spine Unit, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Dong-Gune Chang
- Department of Orthopedic Surgery, College of Medicine, Inje University Sanggye Paik Hospital, Inje University, Seoul, 50834, Korea
| | - Se-Il Suk
- Department of Orthopedic Surgery, College of Medicine, Inje University Sanggye Paik Hospital, Inje University, Seoul, 50834, Korea
| | | |
Collapse
|
6
|
Rypdal KB, Apte SS, Lunde IG. Emerging roles for the ADAMTS-like family of matricellular proteins in cardiovascular disease through regulation of the extracellular microenvironment. Mol Biol Rep 2024; 51:280. [PMID: 38324186 PMCID: PMC10850197 DOI: 10.1007/s11033-024-09255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Dysregulation of the extracellular matrix (ECM) occurs widely across cardiovascular pathologies. Recent work has revealed important roles for the «a disintegrin-like and metalloprotease domain with thrombospondin-type 1 motifs like" (ADAMTSL) family of secreted glycoproteins in cardiovascular tissues during development and disease. Key insights in this regard have come from naturally occurring gene mutations in humans and animals that result in severe diseases with cardiovascular manifestations or aortopathies. Expression of ADAMTSL genes is greatly increased in the myocardium during heart failure. Genetically modified mice recapitulate phenotypes of patients with ADAMTSL mutations and demonstrate important functions in the ECM. The novel functions thus disclosed are intriguing because, while these proteins are neither structural, nor proteases like the related ADAMTS proteases, they appear to act as regulatory, i.e., matricellular proteins. Evidence from genetic variants, genetically engineered mouse mutants, and in vitro investigations have revealed regulatory functions of ADAMTSLs related to fibrillin microfibrils and growth factor signaling. Interestingly, the ability to regulate transforming growth factor (TGF)β signaling may be a shared characteristic of some ADAMTSLs. TGFβ signaling is important in cardiovascular development, health and disease and a central driver of ECM remodeling and cardiac fibrosis. New strategies to target dysregulated TGFβ signaling are warranted in aortopathies and cardiac fibrosis. With their emerging roles in cardiovascular tissues, the ADAMTSL proteins may provide causative genes, diagnostic biomarkers and novel treatment targets in cardiovascular disease. Here, we discuss the relevance of ADAMTSLs to cardiovascular medicine.
Collapse
Affiliation(s)
- Karoline Bjarnesdatter Rypdal
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway.
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Ida G Lunde
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Jiang X, Liu F, Zhang M, Hu W, Zhao Y, Xia B, Xu K. Advances in genetic factors of adolescent idiopathic scoliosis: a bibliometric analysis. Front Pediatr 2024; 11:1301137. [PMID: 38322243 PMCID: PMC10845672 DOI: 10.3389/fped.2023.1301137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
Objective This study offers a bibliometric analysis of the current situation, hotspots, and cutting-edge domains of genetic factors of adolescent idiopathic scoliosis (AIS). Methods All publications related to genetic factors of AIS from January 1, 1992, to February 28, 2023, were searched from the Web of Science. CiteSpace software was employed for bibliometric analysis, collecting information about countries, institutions, authors, journals, and keywords of each article. Results A cumulative number of 308 articles have been ascertained. Since 2006, publications relating to genetic factors of AIS have significantly increased. China leads in both productivity and influence in this area, with the Chinese Academy of Medical Sciences being the most productive institution. The most prolific scholars in this field are Y. Qiu and Z. Z. Zhu. The publications that contributed the most were from Spine and European Spine Journal. The most prominent keywords in the genetic factors of AIS were "fibrillin gene", "menarche", "calmodulin", "estrogen receptor gene", "linkage analysis", "disc degeneration", "bone mineral density", "melatonin signaling dysfunction", "collagen gene", "mesenchymal stem cell", "LBX1", "promoter polymorphism", "Bone formation", "cerebrospinal fluid flow" and "extracellular matrix". Conclusion This analysis provides the frontiers and trends of genetic factors in AIS, including relevant research, partners, institutions and countries.
Collapse
Affiliation(s)
| | - Fuyun Liu
- Department of Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | | | | | | | |
Collapse
|