1
|
Arjin C, Hnokaew P, Tasuksai P, Thongkham M, Pringproa K, Arunorat J, Yano T, Seel-audom M, Rachtanapun P, Sringarm K, Chuammitri P. Transcriptome Analysis of Porcine Immune Cells Stimulated by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Caesalpinia sappan Extract. Int J Mol Sci 2024; 25:12285. [PMID: 39596350 PMCID: PMC11595159 DOI: 10.3390/ijms252212285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The current level of knowledge on transcriptome responses triggered by Caesalpinia sappan (CS) extract in porcine peripheral blood mononuclear cells (PBMCs) after porcine reproductive and respiratory syndrome virus (PRRSV) infection is limited. Therefore, in the present study, we aimed to detect significant genes and pathways involved in CS extract supplementation responsiveness of PBMCs after PRRSV infection. RNA sequencing was conducted on PBMCs, which were isolated from six weaned piglets. The resultant transcriptional responses were examined by mRNA sequencing. Differential expression analysis identified 263 and 274 differentially expressed genes (DEGs) between the PRRSV and CTRL groups, and the PRRSV+CS and CTRL groups, respectively. Among these, ZNF646 and KAT5 emerged as the most promising candidate genes, potentially influencing the interaction between PRRSV-infected PBMCs and CS extract supplementation through the regulation of gene networks and cellular homeostasis during stress. Two pathways were detected to be associated with CS extract supplementation responsiveness: the cellular response to stress pathway and the NF-kB signaling pathway. Consequently, our study reveals a novel mechanism underlying cellular stress response and the NF-κB signaling pathway in PRRSV-infected PBMCs, and identifies a potential application of CS extract for activating the NF-κB signaling pathway. In conclusion, by supplementing CS extract in PBMC cells infected with PRRSV, we found that CS extract modulates PRRSV infection by inducing cellular stress, which is regulated by the NF-κB signaling pathway. This induced stress creates an adverse environment for PRRSV survival. This study contributes to a deeper understanding of the therapeutic targets and pathogenesis of PRRSV infection. Importantly, our results demonstrate that CS extract has the potential to be a candidate for modulating PRRSV infection.
Collapse
Affiliation(s)
- Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Patipan Hnokaew
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchara Tasuksai
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Kidsadagon Pringproa
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Jirapat Arunorat
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Terdsak Yano
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| |
Collapse
|
2
|
Su X, Zhou H, Han Z, Xu F, Xiao B, Zhang J, Qi Q, Lin L, Zhang H, Li S, Yang B. Transcriptional Differential Analysis of Nitazoxanide-Mediated Anticanine Parvovirus Effect in F81 Cells. Viruses 2024; 16:282. [PMID: 38400057 PMCID: PMC10892128 DOI: 10.3390/v16020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Canine parvovirus (CPV) is a single-stranded DNA virus that can cause typical hemorrhagic enteritis, and it is one of the common canine lethal viruses. In previous studies, we screened the Food and Drug Administration (FDA)'s drug library and identified nitazoxanide (NTZ), which has anti-CPV capabilities. To investigate the potential antiviral mechanisms, we first reconfirmed the inhibitory effect of NTZ on the CPV by inoculating with different doses and treating for different lengths of time. Then, the differences in the transcription levels between the 0.1%-DMSO-treated virus group and the NTZ-treated virus group were detected using RNA-seq, and a total of 758 differential expression genes (DEGs) were finally identified. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs revealed that these genes are involved in a variety of biological processes and/or signaling pathways, such as cell cycle, mitosis and cell proliferation and differentiation. A protein-protein interaction (PPI) analysis further identified hub genes associated with cell cycle and division among the DEGs. In addition, the expression levels of some of the enriched genes were detected, which were consistent with the high-throughput sequencing results. Moreover, when the cell cycle was regulated with cell cycle checkpoint kinase 1 (Chk1) inhibitor MK-8776 or Prexasertib HCl, both inhibitors inhibited the CPV. In summary, the transcriptome differential analysis results presented in this paper lay the foundation for further research on the molecular mechanism and potential targets of NTZ anti-CPV.
Collapse
Affiliation(s)
- Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| | - Ziwei Han
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| | - Bing Xiao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| | - Jin Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| | - Qi Qi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| | - Lulu Lin
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| | - Huanhuan Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Songping Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.S.); (H.Z.); (Z.H.); (F.X.); (B.X.); (J.Z.); (Q.Q.); (L.L.); (H.Z.)
| |
Collapse
|
3
|
Lyu S, Guo Q, Shen W, Han M, Xiong F, Dai X, Liu L, Bu W, Lou B, Yuan J. Comparative analysis of whole-transcriptome RNA expression of lung tissue of Chinese soft-shell turtle infected by Trionyx sinensis Hemorrhagic Syndrome Virus. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109236. [PMID: 37992913 DOI: 10.1016/j.fsi.2023.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV), the first aquatic arterivirus identified in China, causes severe mortality to T. sinensis. In this study, we sought to determine the functions of T. sinensis mRNAs and non-coding RNAs (ncRNAs) that were differentially expressed (DE) over different periods of TSHSV infection of T. sinensis lung. We used RT-qPCR to validate the sequencing results of select RNAs, confirming their reliable and referable nature. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict multiple biological functions and signaling pathways in various comparison groups (1-day versus mock, 3-day versus 1-day, and 5-day versus 3-day). Multiple types of differentially expressed RNA, including mRNA, lncRNA, circRNA, and miRNA, were associated with cardiac dysfunction, coagulation abnormalities, and arachidonic acid metabolism at day 1. Pre-inflammatory cytokines and inflammatory factors such as PLA2G4A, cPLA2, γ-GGT1, TNFRSF14, TCP11L2, PTER CYP2J2 and LTC4S, were noticeably regulated at the same time. On day 3, multiple GO terms and KEGG pathways were implicated, including those related to virus defense, apoptosis, pyroptosis, and inflammatory response. Notably, key genes such as RSAD2, TRIM39, STAT4, CASP1, CASP14, MYD88, CXCL3, CARD11, ZBP1, and ROBO4 exhibited significant regulation. The lncRNAs and circRNAs that targeted the genes involved in viral recognition (TLR5), apoptosis (CARD11), pyroptosis (ZBP1), inflammatory processes (NEK7, RASGRP4, and SELE) and angiogenesis (ROBO4) exhibited significant regulation. Significantly regulated miRNAs were primarily linked to genes involved in apoptosis (Let-7f-3p, miR-1260a, miR-455-3p), and inflammation (miR-146a, miR-125a, miR-17a, miR-301b, and miR-30a-3p). The findings could advance our understanding of the host immunological response to TSHSV and offer new ideas for developing effective strategies to prevent infection of T. sinensis.
Collapse
Affiliation(s)
- Sunjian Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Qi Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Weifeng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Fulei Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Xiaoling Dai
- College of Life Science, China Jiliang University, 258, Xueyuan Street, Xiasha Higher Education Park, Hangzhou, Zhejiang, 310018, PR China
| | - Li Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China.
| | - Weishao Bu
- Yunhe County Qingjiang Ecological Trionyx sinensis Breeding Cooperative, Shipu Village, Jinshuitan Town, Yunhe County, Zhejiang, 310018, PR China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, 999 South Hangchangqiao Road, Huzhou, Zhejiang, 313001, PR China
| |
Collapse
|