1
|
Tao YF, Pan YF, Zhong CY, Wang QC, Hua JX, Lu SQ, Li Y, Dong YL, Xu P, Jiang BJ, Qiang J. Silencing the fatty acid elongase gene elovl6 induces reprogramming of nutrient metabolism in male Oreochromis niloticus. Int J Biol Macromol 2024; 271:132666. [PMID: 38806081 DOI: 10.1016/j.ijbiomac.2024.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.
Collapse
Affiliation(s)
- Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yi-Fan Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Chun-Yi Zhong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qing-Chun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ji-Xiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Si-Qi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ya-Lun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bing-Jie Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
2
|
Tao Y, Hua J, Lu S, Wang Q, Li Y, Jiang B, Dong Y, Qiang J, Xu P. Ultrastructural, Antioxidant, and Metabolic Responses of Male Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) to Acute Hypoxia Stress. Antioxidants (Basel) 2024; 13:89. [PMID: 38247513 PMCID: PMC10812458 DOI: 10.3390/antiox13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Tilapia tolerate hypoxia; thus, they are an excellent model for the study of hypoxic adaptation. In this study, we determined the effect of acute hypoxia stress on the antioxidant capacity, metabolism, and gill/liver ultrastructure of male genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Fish were kept under control (dissolved oxygen (DO): 6.5 mg/L) or hypoxic (DO: 1.0 mg/L) conditions for 72 h. After 2 h of hypoxia stress, antioxidant enzyme activities in the heart and gills decreased, while the malondialdehyde (MDA) content increased. In contrast, in the liver, antioxidant enzyme activities increased, and the MDA content decreased. From 4 to 24 h of hypoxia stress, the antioxidant enzyme activity increased in the heart but not in the liver and gills. Cytochrome oxidase activity was increased in the heart after 4 to 8 h of hypoxia stress, while that in the gills decreased during the later stages of hypoxia stress. Hypoxia stress resulted in increased Na+-K+-ATP activity in the heart, as well as hepatic vacuolization and gill lamella elongation. Under hypoxic conditions, male GIFT exhibit dynamic and complementary regulation of antioxidant systems and metabolism in the liver, gills, and heart, with coordinated responses to mitigate hypoxia-induced damage.
Collapse
Affiliation(s)
- Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jixiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Bingjie Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Yalun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
3
|
Jiang D, Ji C, Kang L, Ling W, Wang Z, Wang X, Niu C, Guo Y, Sun Q, An X, Kang B. Correlation analysis of polyamine metabolism and reproductive hormone levels in goose ovarian follicles. Theriogenology 2023; 210:244-250. [PMID: 37544046 DOI: 10.1016/j.theriogenology.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
To investigate the relationship between polyamine metabolism and reproductive hormones in ovarian follicles of Sichuan white geese, follicle polyamine content and reproductive hormone levels and gene expressions related to polyamine metabolism, steroidogenesis and steroid hormone receptors were detected by HPLC, ELISA and RT-qPCR. The results showed that the overall trend of spermidine and spermine levels increased first and then decreased as increasing follicle size, with the highest level in F3 and F5 follicles (P < 0.05). Putrescine and 17β-estradiol (E2) levels in hierarchical follicles were significantly lower than those in prehierarchical follicles (P < 0.05). Progesterone (P4) first increased and then decreased, with the highest level in the F5 follicle (P < 0.05). The expression levels of estrogen receptor 1 (ER1) showed an overall increase as increasing follicle size (except in F3 follicles), while estrogen receptor 2 (ER2) in hierarchical follicles was significantly lower than that in the prehierarchical follicles (P < 0.05). In addition, the overall expression level of progesterone receptor (PR) decreased, with no significant differences among F1, F2 and F3 follicles (P > 0.05). Yolk putrescine contents were positively correlated with yolk E2 concentrations and PR expression levels (P < 0.05), A significant positive correlation of spermidine levels with yolk P4 concentrations and PR expressions was also observed, as well as the spermine levels with yolk P4 concentrations (P < 0.05). In summary, polyamines were involved in the regulation of follicular development in geese, and this regulation played a role in affecting steroidogenesis and the expression of genes related to hormone receptors.
Collapse
Affiliation(s)
- Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lijuan Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Zelong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chunyang Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yongni Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qian Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|