1
|
Yang M, Ma Y, Song X, Miao J, Yan L. Integrative chemical and multiomics analyses of tetracycline removal mechanisms in Pseudomonas sp. DX-21. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134123. [PMID: 38554508 DOI: 10.1016/j.jhazmat.2024.134123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Tetracycline (TC), widely found in various environments, poses significant risks to ecosystems and human health. While efficient biodegradation removes TC, the mechanisms underlying this process have not been elucidated. This study investigated the molecular mechanisms underlying TC biosorption and transfer within the extracellular polymeric substances (EPS) of strain DX-21 and its biodegradation process using fourier transform infrared spectroscopy, molecular docking, and multiomics. Under TC stress, DX-21 increased TC biosorption by secreting more extracellular polysaccharides and proteins, particularly the latter, mitigating toxicity. Moreover, specialized transporter proteins with increased binding capacity facilitated TC movement from the EPS to the cell membrane and within the cell. Transcriptomic and untargeted metabolomic analyses revealed that the presence of TC led to the differential expression of 306 genes and significant alterations in 37 metabolites. Notably, genes related to key enzymes, such as electron transport, peroxidase, and oxidoreductase, exhibited significant differential expression. DX-21 combated and degraded TC by regulating metabolism, altering cell membrane permeability, enhancing oxidative defense, and enhancing energy availability. Furthermore, integrative omics analyses indicated that DX-21 degrades TC via various enzymes, reallocating resources from other biosynthetic pathways. These results advance the understanding of the metabolic responses and regulatory mechanisms of DX-21 in response to TC.
Collapse
Affiliation(s)
- Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifei Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Meng YY, Peng JH, Qian J, Fei FL, Guo YY, Pan YJ, Zhao Y, Liu HQ. The two-component system expression patterns and immune regulatory mechanism of Vibrio parahaemolyticus with different genotypes at the early stage of infection in THP-1 cells. mSystems 2023; 8:e0023723. [PMID: 37432027 PMCID: PMC10469919 DOI: 10.1128/msystems.00237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
Vibrio parahaemolyticus must endure various challenging circumstances while being swallowed by phagocytes of the innate immune system. Moreover, bacteria should recognize and react to environmental signals quickly in host cells. Two-component system (TCS) is an important way for bacteria to perceive external environmental signals and transmit them to the interior to trigger the associated regulatory mechanism. However, the regulatory function of V. parahaemolyticus TCS in innate immune cells is unclear. Here, the expression patterns of TCS in V. parahaemolyticus-infected THP-1 cell-derived macrophages at the early stage were studied for the first time. Based on protein-protein interaction network analysis, we mined and analyzed seven critical TCS genes with excellent research value in the V. parahaemolyticus regulating macrophages, as shown below. VP1503, VP1502, VPA0021, and VPA0182 could regulate the ATP-binding-cassette (ABC) transport system. VP1735, uvrY, and peuR might interact with thermostable hemolysin proteins, DNA cleavage-related proteins, and TonB-dependent siderophore enterobactin receptor, respectively, which may assist V. parahaemolyticus in infected macrophages. Subsequently, the potential immune escape pathways of V. parahaemolyticus regulating macrophages were explored by RNA-seq. The results showed that V. parahaemolyticus might infect macrophages by controlling apoptosis, actin cytoskeleton, and cytokines. In addition, we found that the TCS (peuS/R) could enhance the toxicity of V. parahaemolyticus to macrophages and might contribute to the activation of macrophage apoptosis. IMPORTANCE This study could offer crucial new insights into the pathogenicity of V. parahaemolyticus without tdh and trh genes. In addition, we also provided a novel direction of inquiry into the pathogenic mechanism of V. parahaemolyticus and suggested several TCS key genes that may assist V. parahaemolyticus in innate immune regulation and interaction.
Collapse
Affiliation(s)
- Yuan-Yuan Meng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Hui Peng
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, China
| | - Jiang Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Fu-Lin Fei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Ying Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Jie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Hai-Quan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|