1
|
Chen W, Pan Z, Feng Z, Wang X, Zhu S. Deciphering the code: the pivotal role of lncRNAs in advancing TNBC therapy. Front Oncol 2024; 14:1450980. [PMID: 39286016 PMCID: PMC11402698 DOI: 10.3389/fonc.2024.1450980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most formidable subtype of breast cancer, characterized by a notable dearth in targeted therapeutic options. Deciphering the underlying molecular mechanisms of TNBC is pivotal for improving patient outcomes. Recent scientific advancements have spotlighted long non-coding RNAs (lncRNAs) as key players in the genesis, progression, and metastasis of cancers. This review delineates the significant influence of lncRNAs on the advancement, detection, and neoadjuvant chemotherapy efficacy in TNBC, detailing the diverse expression patterns of aberrant lncRNAs. The paper explores the specific mechanisms by which lncRNAs regulate gene expression in both the nucleus and cytoplasm, with a special focus on their involvement in TNBC's post-transcriptional landscape. Thorough investigations into TNBC-associated lncRNAs not only forge new avenues for early diagnosis and potent treatment strategies but also highlight these molecules as promising therapeutic targets, heralding an era of personalized and precision medicine in TNBC management.
Collapse
Affiliation(s)
- Weiping Chen
- Department of Respiratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhiyong Pan
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhengfu Feng
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Xin Wang
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Song Zhu
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
2
|
Liu J, Wang M, Wang M, Wang F, Zhang B. LncRNAs-Regulated High Expression of LAMC2 Reveals a Prognostic and Immunological Value in Pancreatic Adenocarcinoma. Biochem Genet 2024; 62:485-503. [PMID: 37382751 DOI: 10.1007/s10528-023-10435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most hazardous cancers in digestive system, and the prognosis is notoriously bad. Increasing evidences indicate that Laminin Subunit Gamma 2 (LAMC2) is critical for the initiation and the growth of various sorts of human cancers. However, the involved molecular pathways of LAMC2 in PAAD are still poorly understood. In this study, prediction programs and databases were employed to conduct pan-cancer analysis. Multiple variations of human malignancies showed increased LAMC2 expression, which was positively correlated to a poor prognosis in PAAD. Moreover, LAMC2 was positively correlated with the biomarkers of immune cells including CD19, CD163, and NOS2 in PAAD. The lncRNA C5orf66 /PTPRG-AS1- miR-128-3p -LAMC2 axis was identified to be a potential upstream regulatory pathway of LAMC2 in PAAD. Furthermore, LAMC2 upregulation in PAAD was associated with PD-L1 expression, indicating promoting carcinoma immune cell infiltration. Our study elucidated prognostic and immunological values of LAMC2 in PAAD, providing a promise target for PAAD treatment.
Collapse
Affiliation(s)
- Jingyun Liu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mengyue Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Miaowen Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Fu Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xianyang, 712046, China.
| | - Beilei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
3
|
Yang Q, Fu Y, Wang J, Yang H, Zhang X. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. J Zhejiang Univ Sci B 2023; 24:1123-1140. [PMID: 38057269 PMCID: PMC10710915 DOI: 10.1631/jzus.b2300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/24/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaxuan Wang
- Shanxi Medical University, Jinzhong 030600, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
4
|
Hussen BM, Hidayat HJ, Abdullah SR, Mohamadtahr S, Rasul MF, Samsami M, Taheri M. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets. Cytokine 2023; 170:156351. [PMID: 37657235 DOI: 10.1016/j.cyto.2023.156351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-β dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-β signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-β by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-β pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-β signaling. Further, we emphasize the functional roles of lncRNAs and TGF-β pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mathias C, Kozak VN, Magno JM, Baal SCS, dos Santos VHA, Ribeiro EMDSF, Gradia DF, Castro MAA, Carvalho de Oliveira J. PD-1/PD-L1 Inhibitors Response in Triple-Negative Breast Cancer: Can Long Noncoding RNAs Be Associated? Cancers (Basel) 2023; 15:4682. [PMID: 37835376 PMCID: PMC10572024 DOI: 10.3390/cancers15194682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/15/2023] Open
Abstract
As immune checkpoint inhibitors (ICI) emerge as a paradigm-shifting treatment option for patients with advanced or metastatic cancer, there is a growing demand for biomarkers that can distinguish which patients are likely to benefit. In the case of triple-negative breast cancer (TNBC), characterized by a lack of therapeutic targets, pembrolizumab approval for high-risk early-stage disease occurred regardless of PD-L1 status, which keeps the condition in a biomarker limbus. In this review, we highlight the participation of long non-coding RNAs (lncRNAs) in the regulation of the PD-1/PD-L1 pathway, as well as in the definition of prognostic immune-related signatures in many types of tumors, aiming to shed light on molecules that deserve further investigation for a potential role as biomarkers. We also conducted a bioinformatic analysis to investigate lncRNAs already investigated in PD-1/PDL-1 pathways in other cancer types, considering the TNBC molecular context. In this sense, from the generated data, we evidence here two lncRNAs, UCA1 and HCP5, which have not yet been identified in the context of the tumoral immune response in breast cancer. These candidates can be further explored to verify their use as biomarkers for ICI response. In this article, we present an updated review regarding the use of lncRNA as biomarkers of response to ICI, highlighting the versatility of using these molecules.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Jessica Maria Magno
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Victor Henrique Apolonio dos Santos
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | | | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Mauro Antonio Alves Castro
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| |
Collapse
|
6
|
Yao W, Wang L, Liu F, Xia L. The role of long non-coding RNAs in breast cancer microenvironment. Pathol Res Pract 2023; 248:154707. [PMID: 37506626 DOI: 10.1016/j.prp.2023.154707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The tumor microenvironment (TME), which includes tumor cells, fibroblasts, endothelial cells, immune cells, and blood vessels, can affect tumor growth and metastasis. Studies have shown that tumor cells, fibroblasts, and macrophages can promote the development of tumors, while T and B cells can inhibit tumor progression. The crosstalk among different cells within the TME needs further study. Long non-coding RNAs (lncRNAs) are involved in biological processes, including cell proliferation, migration, and differentiation. The abnormal expression of certain lncRNAs is correlated with the progression of breast cancer and has been proven as diagnostic markers in various cancers, including breast cancer. In breast cancer, recent studies have shown that tumor cell- and non-tumor cell-derived lncRNAs can affect various facets of tumor progression, including growth, proliferation, and migration of tumor cells. Interestingly, in addition to being regulated by lncRNAs derived from tumor and non-tumor cells, the TME can regulate the expression of lncRNAs in tumor cells, fibroblasts, and macrophages, influencing their phenotype and function. However, the detailed molecular mechanisms of these phenomena remain unclear in the breast cancer microenvironment. Currently, many studies have shown that TME-associated lncRNAs are potential diagnostic and therapeutic targets for breast cancer. Considering that TME and lncRNAs can regulate each other, we summarize the role of lncRNAs in the breast cancer microenvironment and the potential of lncRNAs as valuable diagnostic markers.
Collapse
Affiliation(s)
- Wenwu Yao
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
7
|
Fang Y, Zhang Q, Chen C, Chen Z, Zheng R, She C, Zhang R, Wu J. Identification and comprehensive analysis of epithelial-mesenchymal transition related target genes of miR-222-3p in breast cancer. Front Oncol 2023; 13:1189635. [PMID: 37546414 PMCID: PMC10400091 DOI: 10.3389/fonc.2023.1189635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) is a crucial mechanism that microRNA-222-3p (miR-222-3p) promotes breast cancer (BC) progression. Our study aimed to identify EMT-associated target genes (ETGs) of miR-222-3p for further analysis of their roles in BC based on bioinformatics tools. Methods Based on bioinformatics analysis, we identified 10 core ETGs of miR-222-3p. Then, we performed a comprehensive analysis of 10 ETGs and miR-222-3p, including pathway enrichment analysis of ETGs, differential expression, clinical significance, correlation with immune cell infiltration, immune checkpoint genes (ICGs) expression, tumor mutational burden (TMB), microsatellite instability (MSI), stemness, drug sensitivity, and genetic alteration. Results The expression of miR222-3p in basal-like BC was significantly higher than in other subtypes of BC and the normal adjacent tissue. Pathway analysis suggested that the ETGs might regulate the EMT process via the PI3K-Akt and HIF-1 signaling pathway. Six of the 10 core ETGs of miR-222-3p identified were down-expressed in BC, which were EGFR, IL6, NRP1, NTRK2, LAMC2, and PIK3R1, and SERPINE1, MUC1, MMP11, and BIRC5 were up-expressed in BC, which also showed potential diagnostic values in BC. Prognosis analysis revealed that higher NTRK2 and PIK3R1 expressions were related to a better prognosis, and higher BIRC5 and miR-222-3p expressions were related to a worse prognosis. Most ETGs and miR-222-3p were positively correlated with various infiltration of various immune cells and ICGs expression. Lower TMB scores were correlated with higher expression of MUC1 and NTRK2, and higher BIRC5 was related to a higher TMB score. Lower expression of MUC1, NTRK2, and PIK3R1 were associated with higher MSI scores. Higher expression of ETGs was associated with lower mRNAsi scores, except BIRC5 and miR-222-3p conversely. Most ETGs and miR-222-3p expression were negatively correlated with the drug IC50 values. The analysis of the genetic alteration of the ETGs suggested that amplification was the main genetic alteration of eight ETGs except for NTRK2 and PIK3R1. Conclusion MiR-222-3p might be a specific biomarker of basal-like BC. We successfully identify 10 core ETGs of miR-222-3p, some might be useful diagnostic and prognostic biomarkers. The comprehensive analysis of 10 ETGs and miR-222-3p indicated that they might be involved in the development of BC, which might be novel therapeutic targets for the treatment of BC.
Collapse
Affiliation(s)
- Yutong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qunchen Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chunfa Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zexiao Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rongji Zheng
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chuanghong She
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rendong Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
8
|
Application value of circulating LncRNA in diagnosis, treatment, and prognosis of breast cancer. Funct Integr Genomics 2023; 23:61. [PMID: 36792760 DOI: 10.1007/s10142-023-00983-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer is the malignant tumor with the highest incidence in women worldwide. It is highly heterogeneous, has a high incidence of drug resistance, recurrence, and metastasis, and is one of the malignant tumors with the highest mortality rate. The early diagnosis, treatment monitoring, and prognosis assessment of breast cancer are the key factors affecting the survival of patients. However, due to the lack of specific biomarkers, breast cancer is still an essential factor affecting women's quality of life and physical and mental health. Long non-coding RNA can regulate various genes and different signaling pathways and plays an essential role in the occurrence and development of tumors. Recent studies have found that the abnormal expression of circulating long non-coding RNA in serum, saliva, and other biological body fluids plays a significant role in early diagnosis, pathological classification, stage, therapeutic effect monitoring, and prognosis evaluation of breast cancer. This article will review the potential application value of circulating lncRNA in breast cancer.
Collapse
|