1
|
Guo D, Wang H, Zhang S, Lan T. The type III polyketide synthase supergene family in plants: complex evolutionary history and functional divergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:414-428. [PMID: 36004534 DOI: 10.1111/tpj.15953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Type III polyketide synthases (PKSs) are key enzymes involved in the biosynthesis of a variety of plant specialized metabolites, including flavonoids, stilbenes, and sporopollenin, to name a few. These enzymes likely played vital roles in plant adaptation during their transition from aquatic to terrestrial habitats and their colonization of specific ecological environments. Members of this supergene family have diverse functions, but how type III PKSs and their functions have evolved remains poorly understood. Here, we conducted comprehensive phylogenomics analysis of the type III PKS supergene family in 60 species representing the major plant lineages and elucidated the classification, origin, and evolutionary history of each class. Molecular evolutionary analysis of the typical chalcone synthase and stilbene synthase types revealed evidence for strong positive natural selection in both the Pinaceae and Fabaceae lineages. The positively selected sites of these proteins include residues at the catalytic tunnel entrance and homodimer interface, which might have driven the functional divergence between the two types. Our results also suggest that convergent evolution of enzymes involved in plant flavonoid biosynthesis is quite common. The results of this study provide new insights into the origin, evolution, and functional diversity of plant type III PKSs. In addition, they serve as a guide for the enzymatic engineering of plant polyketides.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| | - Hanyan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| | - Shumin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Genome-Wide Analysis of Type-III Polyketide Synthases in Wheat and Possible Roles in Wheat Sheath-Blight Resistance. Int J Mol Sci 2022; 23:ijms23137187. [PMID: 35806194 PMCID: PMC9266324 DOI: 10.3390/ijms23137187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
The enzymes in the chalcone synthase family, also known as type-III polyketide synthases (PKSs), play important roles in the biosynthesis of various plant secondary metabolites and plant adaptation to environmental stresses. There have been few detailed reports regarding the gene and tissue expression profiles of the PKS (TaPKS) family members in wheat (Triticum aestivum L.). In this study, 81 candidate TaPKS genes were identified in the wheat genome, which were designated as TaPKS1–81. Phylogenetic analysis divided the TaPKS genes into two groups. TaPKS gene family expansion mainly occurred via tandem duplication and fragment duplication. In addition, we analyzed the physical and chemical properties, gene structures, and cis-acting elements of TaPKS gene family members. RNA-seq analysis showed that the expression of TaPKS genes was tissue-specific, and their expression levels differed before and after infection with Rhizoctonia cerealis. The expression levels of four TaPKS genes were also analyzed via qRT-PCR after treatment with methyl jasmonate, salicylic acid, abscisic acid, and ethylene. In the present study, we systematically identified and analyzed TaPKS gene family members in wheat, and our findings may facilitate the cloning of candidate genes associated with resistance to sheath blight in wheat.
Collapse
|
3
|
Kaur A, Ghai D, Yadav VG, Pawar SV, Sembi JK. Polyketide synthases (PKSs) of secondary metabolism: in silico identification and characterization in orchids. J Biomol Struct Dyn 2022:1-13. [PMID: 35735783 DOI: 10.1080/07391102.2022.2090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Type III polyketide synthases (PKSs) catalyse the formation of an array of polyketides with diverse structures that play an important role in secondary metabolism in plants. This group of enzymes is encoded by a multigene family, the Type III polyketide synthase (PKS) gene family. Vast reserves of secondary metabolites in orchids make these plants suitable candidates for research in the area. In this study, genome-wide searches lead to the identification of five PeqPKS, eight DcaPKS and six AshPKS genes in Phalaenopsis equestris, Dendrobium catenatum and Apostasia shenzhenica, respectively. All the members showed the presence of two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C) and were generally localised in the cytoplasm. The phylogenetic analysis led to the classification of these proteins into two groups: CHS (chalcone synthase (CHS) and non-CHS. A single protein in P. equestris and two proteins each in D. catenatum and A. shenzhenica clustered within the CHS clade. The majority of the genes exhibited similar structural patterns with a single intron. Expression profiling revealed the tissue-specific expression of these genes with high expression in reproductive tissues for most genes. A number of stress-responsive cis-regulatory elements were predicted, noteworthy amongst these are, ABRE and CGTCA that are chiefly responsible for responding to abscisic acid and methyl jasmonate, respectively. Our study provides a reference framework for future studies involving functional elucidation of PKS genes and biotechnological production of polyketides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Devina Ghai
- Department of Botany, Panjab University, Chandigarh, India
| | - Vikramaditya G Yadav
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
4
|
Khan N, You FM, Datla R, Ravichandran S, Jia B, Cloutier S. Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.). BMC Genomics 2020; 21:722. [PMID: 33076828 PMCID: PMC7574471 DOI: 10.1186/s12864-020-07121-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The recent release of the reference genome sequence assembly of flax, a self-pollinated crop with 15 chromosome pairs, into chromosome-scale pseudomolecules enables the characterization of gene families. The ABC transporter and HMA gene families are important in the control of cadmium (Cd) accumulation in crops. To date, the genome-wide analysis of these two gene families has been successfully conducted in some plant species, but no systematic evolutionary analysis is available for the flax genome. Results Here we describe the ABC transporter and HMA gene families in flax to provide a comprehensive overview of its evolution and some support towards the functional annotation of its members. The 198 ABC transporter and 12 HMA genes identified in the flax genome were classified into eight ABC transporter and four HMA subfamilies based on their phylogenetic analysis and domains’ composition. Nine of these genes, i.e., LuABCC9, LuABCC10, LuABCG58, LuABCG59, LuABCG71, LuABCG72, LuABCG73, LuHMA3, and LuHMA4, were orthologous with the Cd associated genes in Arabidopsis, rice and maize. Ten motifs were identified from all ABC transporter and HMA genes. Also, several motifs were conserved among genes of similar length, but each subfamily each had their own motif structures. Both the ABC transporter and HMA gene families were highly conserved among subfamilies of flax and with those of Arabidopsis. While four types of gene duplication were observed at different frequencies, whole-genome or segmental duplications were the most frequent with 162 genes, followed by 29 dispersed, 14 tandem and 4 proximal duplications, suggesting that segmental duplications contributed the most to the expansion of both gene families in flax. The rates of non-synonymous to synonymous (Ka/Ks) mutations of paired duplicated genes were for the most part lower than one, indicative of a predominant purifying selection. Only five pairs of genes clearly exhibited positive selection with a Ka/Ks ratio greater than one. Gene ontology analyses suggested that most flax ABC transporter and HMA genes had a role in ATP binding, transport, catalytic activity, ATPase activity, and metal ion binding. The RNA-Seq analysis of eight different organs demonstrated diversified expression profiling patterns of the genes and revealed their functional or sub-functional conservation and neo-functionalization. Conclusion Characterization of the ABC transporter and HMA gene families will help in the functional analysis of candidate genes in flax and other crop species.
Collapse
Affiliation(s)
- Nadeem Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Frank M You
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Bosen Jia
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada. .,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
5
|
Transgenerational Perpetuation of CHS Gene Expression and DNA Methylation Status Induced by Short Oligodeoxynucleotides in Flax ( Linum usitatissimum). Int J Mol Sci 2019; 20:ijms20163983. [PMID: 31426274 PMCID: PMC6719086 DOI: 10.3390/ijms20163983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
Over two decades ago, short oligodeoxynucleotides (ODNs) were proven to be an effective and rapid technique for analysis of gene function without interference in the plant genome. Our previous research has shown the successful regulation of chalcone synthase (CHS) gene expression in flax by ODN technology. The CHS gene encodes a pivotal enzyme in flavonoid biosynthesis. The manipulation of its transcript level was the result of the specific methylation status developed after treatment with ODNs. In further analysis of the application of oligodeoxynucleotides in plants, we will focus on maintaining the methylation status induced originally by ODNs homologous to the regulatory regions of the CHS gene in flax. This article reports the latest investigation applied to stabilization and inheritance of the epigenetic marks induced by plants' treatment with ODNs. The methylation status was analyzed in the particular CCGG motifs located in the CHS gene sequence. Individual plants were able to maintain alterations induced by ODNs. In order to confirm the impact of methylation marks on the nucleosome rearrangement, chromatin accessibility assay was performed. The perpetuation of targeted plant modulation induced by ODNs exhibits strong potential for improving crops and intensified application for medicine, nutrition and industry.
Collapse
|
6
|
Saha D, Mukherjee P, Dutta S, Meena K, Sarkar SK, Mandal AB, Dasgupta T, Mitra J. Genomic insights into HSFs as candidate genes for high-temperature stress adaptation and gene editing with minimal off-target effects in flax. Sci Rep 2019; 9:5581. [PMID: 30944362 PMCID: PMC6447620 DOI: 10.1038/s41598-019-41936-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Flax (Linum usitatissimum) is a cool season crop commercially cultivated for seed oil and stem fibre production. A comprehensive characterization of the heat shock factor (HSF) candidate genes in flax can accelerate genetic improvement and adaptive breeding for high temperature stress tolerance. We report the genome-wide identification of 34 putative HSF genes from the flax genome, which we mapped on 14 of the 15 chromosomes. Through comparative homology analysis, we classified these genes into three broad groups, and sub-groups. The arrangement of HSF-specific protein motifs, DNA-binding domain (DBD) and hydrophobic heptad repeat (HR-A/B), and exon-intron boundaries substantiated the phylogenetic separation of these genes. Orthologous relationships and evolutionary analysis revealed that the co-evolution of the LusHSF genes was due to recent genome duplication events. Digital and RT-qPCR analyses provided significant evidence of the differential expression of the LusHSF genes in various tissues, at various developmental stages, and in response to high-temperature stress. The co-localization of diverse cis-acting elements in the promoters of the LusHSF genes further emphasized their regulatory roles in the abiotic stress response. We further confirmed DNA-binding sites on the LusHSF proteins and designed guide RNA sequences for gene editing with minimal off-target effects. These results will hasten functional investigations of LusHSFs or assist in devising genome engineering strategies to develop high-temperature stress tolerant flax cultivars.
Collapse
Affiliation(s)
- Dipnarayan Saha
- Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700121, India.
| | - Pranit Mukherjee
- Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700121, India
| | - Sourav Dutta
- Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700121, India
| | - Kanti Meena
- Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700121, India
| | - Surja Kumar Sarkar
- Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700121, India
| | - Asit Baran Mandal
- Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700121, India
| | - Tapash Dasgupta
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, 700103, West Bengal, India
| | - Jiban Mitra
- Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700121, India
| |
Collapse
|
7
|
Su X, Sun X, Cheng X, Wang Y, Abdullah M, Li M, Li D, Gao J, Cai Y, Lin Y. Comparative genomic analysis of the PKS genes in five species and expression analysis in upland cotton. PeerJ 2017; 5:e3974. [PMID: 29104824 PMCID: PMC5667535 DOI: 10.7717/peerj.3974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Plant type III polyketide synthase (PKS) can catalyse the formation of a series of secondary metabolites with different structures and different biological functions; the enzyme plays an important role in plant growth, development and resistance to stress. At present, the PKS gene has been identified and studied in a variety of plants. Here, we identified 11 PKS genes from upland cotton (Gossypium hirsutum) and compared them with 41 PKS genes in Populus tremula, Vitis vinifera, Malus domestica and Arabidopsis thaliana. According to the phylogenetic tree, a total of 52 PKS genes can be divided into four subfamilies (I-IV). The analysis of gene structures and conserved motifs revealed that most of the PKS genes were composed of two exons and one intron and there are two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C) of the PKS gene family. In our study of the five species, gene duplication was found in addition to Arabidopsis thaliana and we determined that purifying selection has been of great significance in maintaining the function of PKS gene family. From qRT-PCR analysis and a combination of the role of the accumulation of proanthocyanidins (PAs) in brown cotton fibers, we concluded that five PKS genes are candidate genes involved in brown cotton fiber pigment synthesis. These results are important for the further study of brown cotton PKS genes. It not only reveals the relationship between PKS gene family and pigment in brown cotton, but also creates conditions for improving the quality of brown cotton fiber.
Collapse
Affiliation(s)
- Xueqiang Su
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xu Sun
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yanan Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | | | - Manli Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Junshan Gao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|