1
|
Huang C, Huang Z, Wang P, Wu X, Zhou Q, Ding J, Luo Q, Wu W, Fan X, Fan L. Case report: A novel nonsense mutation in the MARVELD2 gene causes nonsyndromic hearing loss in a China family. Front Genet 2024; 15:1507600. [PMID: 39698467 PMCID: PMC11652519 DOI: 10.3389/fgene.2024.1507600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
The MARVELD2 gene is located on chromosome 5q13.2 and is associated with autosomal recessive nonsyndromic hearing loss (OMIM: # 610572). In this study, we identified and reported a novel nonsense mutation in MARVELD2 c. 663G > A in a Chinese family. We collected peripheral venous blood from 19 members of the affected family and performed whole exome sequencing to analyze the mutation genotype. A single-nucleotide mutation was detected in MARVELD2. Five individuals in the family carried the MARVELD2 c.663G>A mutation; one of them was homozygous and showed severe congenital deafness and language impairment. The next-generation sequencing results were validated by Sanger sequencing. This study expands the spectrum of MARVELD2 mutations that cause nonsyndromic hearing loss and provides insights into the molecular pathogenesis underlying deafness. This finding has important implications for genetic screening, diagnosis, counseling, and research of deafness-related genes.
Collapse
Affiliation(s)
- Chuican Huang
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
| | - Zhenning Huang
- School of Basic Medicine and Life Science, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - Ping Wang
- School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - Xijing Wu
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
- School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - Qiaomiao Zhou
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
| | - Jun Ding
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
| | - Qing Luo
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
| | - Weijia Wu
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
| | - Xialin Fan
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
| | - Lichun Fan
- Hainan Women and Children’s Medical Center, Hainan Medical University, Hainan Academy of Medical sciences, Haikou, China
- School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| |
Collapse
|
2
|
Yuan Y, Yan D, Skidmore J, Chapagain P, Liu X, He S. Responsiveness of the electrically stimulated cochlear nerve in patients with a missense variant in ACTG1: Preliminary Results. FRONTIERS IN AUDIOLOGY AND OTOLOGY 2023; 1:1213323. [PMID: 38590973 PMCID: PMC11000624 DOI: 10.3389/fauot.2023.1213323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This preliminary study identified a missense variant in ACTG1 (NM_001614.5) in a family with autosomal dominant non-syndromic hearing loss (ADNSHL). The responsiveness of the electrically-stimulated cochlear nerve (CN) in two implanted participants with this missense change was also evaluated and reported. Genetic testing was done using a custom capture panel (MiamiOtoGenes) and whole exome sequencing. The responsiveness of the electrically-stimulated CN was evaluated in two members of this family (G1 and G4) using the electrically evoked compound action potential (eCAP). eCAP results from these two participants were compared with those measured three implanted patient populations: children with cochlear nerve deficiency, children with idiopathic hearing loss and normal-sized cochlear nerves, and postligually deafened adults. Sequencing of ACTG1 identified a missense c.737A>T (p. Gln246Leu) variant in ACTG1 (NM_001614.5) which is most likely the genetic cause of ADNSHL in this family. eCAP results measured in these two participants showed substantial variations. The results indicated the missense c.737A>T (p. Gln246Leu) variant in ACTG1 (NM_001614.5) co-segregated with hearing loss in this family. The responsiveness of the electrically-stimulated CN can vary among patients with the same genetic variants, which suggests the importance of evaluating the functional status of the CN for individual CI patients.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Denise Yan
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeffrey Skidmore
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Xuezhong Liu
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shuman He
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
3
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Sharma N, Kumari D, Panigrahi I, Khetarpal P. A systematic review of the monogenic causes of Non-Syndromic Hearing Loss (NSHL) and discussion of Current Diagnosis and Treatment options. Clin Genet 2023; 103:16-34. [PMID: 36089522 DOI: 10.1111/cge.14228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
Hearing impairment is one of the most widespread inheritable sensory disorder affecting at least 1 in every 1000 born. About two-third of hereditary hearing loss (HHL) disorders are non-syndromic. To provide comprehensive update of monogenic causes of non-syndromic hearing loss (NSHL), literature search has been carried out with appropriate keywords in the following databases-PubMed, Google Scholar, Cochrane library, and Science Direct. Out of 2214 papers, 271 papers were shortlisted after applying inclusion and exclusion criterion. Data extracted from selected papers include information about gene name, identified pathogenic variants, ethnicity of the patient, age of onset, gender, title, authors' name, and year of publication. Overall, pathogenic variants in 98 different genes have been associated with NSHL. These genes have important role to play during early embryonic development in ear structure formation and hearing development. Here, we also review briefly the recent information about diagnosis and treatment approaches. Understanding pathogenic genetic variants are helpful in the management of affected and may offer targeted therapies in future.
Collapse
Affiliation(s)
- Nandita Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Divya Kumari
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Inusha Panigrahi
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
5
|
DFNA20/26 and Other ACTG1-Associated Phenotypes: A Case Report and Review of the Literature. Audiol Res 2021; 11:582-593. [PMID: 34698053 PMCID: PMC8544197 DOI: 10.3390/audiolres11040052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Since the early 2000s, an ever-increasing subset of missense pathogenic variants in the ACTG1 gene has been associated with an autosomal-dominant, progressive, typically post-lingual non-syndromic hearing loss (NSHL) condition designed as DFNA20/26. ACTG1 gene encodes gamma actin, the predominant actin protein in the cytoskeleton of auditory hair cells; its normal expression and function are essential for the stereocilia maintenance. Different gain-of-function pathogenic variants of ACTG1 have been associated with two major phenotypes: DFNA20/26 and Baraitser-Winter syndrome, a multiple congenital anomaly disorder. Here, we report a novel ACTG1 variant [c.625G>A (p. Val209Met)] in an adult patient with moderate-severe NSHL characterized by a downsloping audiogram. The patient, who had a clinical history of slowly progressive NSHL and tinnitus, was referred to our laboratory for the analysis of a large panel of NSHL-associated genes by next generation sequencing. An extensive review of previously reported ACTG1 variants and their associated phenotypes was also performed.
Collapse
|
6
|
Vanslembrouck B, Ampe C, Hengel J. Time for rethinking the different β‐actin transgenic mouse models? Cytoskeleton (Hoboken) 2020; 77:527-543. [DOI: 10.1002/cm.21647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bieke Vanslembrouck
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Jolanda Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| |
Collapse
|
7
|
DFNA5 ( GSDME) c.991-15_991-13delTTC: Founder Mutation or Mutational Hotspot? Int J Mol Sci 2020; 21:ijms21113951. [PMID: 32486382 PMCID: PMC7312536 DOI: 10.3390/ijms21113951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/26/2023] Open
Abstract
Deafness due to mutations in the DFNA5 gene is caused by the aberrant splicing of exon 8, which results in a constitutively active truncated protein. In a large family of European descent (MORL-ADF1) segregating autosomal dominant nonsyndromic hearing loss, we used the OtoSCOPE platform to identify the genetic cause of deafness. After variant filtering and prioritization, the only remaining variant that segregated with the hearing loss in the family was the previously described c.991-15_991-13delTTC mutation in DFNA5. This 3-base pair deletion in the polypyrimidine of intron 7 is a founder mutation in the East Asian population. Using ethnicity-informative markers and haplotype reconstruction within the DFNA5 gene, we confirmed family MORL-ADF1 is of European ancestry, and that the c.991-15_991-13delTTC mutation arose on a unique haplotype, as compared to that of East Asian families segregating this mutation. In-depth audiometric analysis showed no statistical difference between the audiometric profile of family MORL-ADF1 and the East Asian families. Our data suggest the polypyrimidine tract in intron 7 may be a hotspot for mutations.
Collapse
|