1
|
Armfield BA, Cohn MJ. Single cell transcriptomic analysis of external genitalia reveals complex and sexually dimorphic cell populations in the early genital tubercle. Dev Biol 2021; 477:145-154. [PMID: 34033822 DOI: 10.1016/j.ydbio.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
External genital organs are among the most recognizable sexually dimorphic characters. The penis and clitoris develop from the embryonic genital tubercle, an outgrowth at the anterior margin of the cloaca that undergoes an extensive period of development in male and female embryos prior to the onset of sexual differentiation. In mice, differentiation into the penis and clitoris begins around embryonic day (E)15.5. Current knowledge of cell types that comprise the genital tubercle is limited to a few studies that have fate mapped derivatives of endoderm, mesoderm, and ectoderm. Here we use single cell transcriptomics to characterize the cell populations in the genital tubercles of male and female mouse embryos at E14.5, approximately 24 h before the onset of sexual differentiation, and we present the first comprehensive atlas of single-cell gene expression during external genital development. Clustering analyses and annotation using marker genes shows 19 distinct cell populations in E14.5 genital tubercles. Mapping of cell clusters to anatomical locations using in situ gene expression patterns revealed granularity of cellular specializations and positional identities. Although E14.5 precedes sexually dimorphic morphogenesis of the genital tubercle, comparative analysis of males and females identified sexual dimorphisms at the single cell level, including male-specific cell clusters with transcriptional signatures of smooth muscle and bone progenitors, both of which are known to be sexually dimorphic in adult genitalia, as well as immune cells. These results provide a new resource for classification of external genital cell types based on gene expression profiles and reveal sex-specific cellular specializations in the early genital tubercle.
Collapse
Affiliation(s)
- Brooke A Armfield
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA; Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Lindner P, Paul S, Eckstein M, Hampel C, Muenzner JK, Erlenbach-Wuensch K, Ahmed HP, Mahadevan V, Brabletz T, Hartmann A, Vera J, Schneider-Stock R. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death Dis 2020; 11:147. [PMID: 32094334 PMCID: PMC7040187 DOI: 10.1038/s41419-020-2340-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic deregulation remarkably triggers mechanisms associated with tumor aggressiveness like epithelial-mesenchymal transition (EMT). Since EMT is a highly complex, but also reversible event, epigenetic processes such as DNA methylation or chromatin alterations must be involved in its regulation. It was recently described that loss of the cell cycle regulator p21 was associated with a gain in EMT characteristics and an upregulation of the master EMT transcription factor ZEB1. In this study, in silico analysis was performed in combination with different in vitro and in vivo techniques to identify and verify novel epigenetic targets of ZEB1, and to proof the direct transcriptional regulation of SETD1B by ZEB1. The chorioallantoic-membrane assay served as an in vivo model to analyze the ZEB1/SETD1B interaction. Bioinformatical analysis of CRC patient data was used to examine the ZEB1/SETD1B network under clinical conditions and the ZEB1/SETD1B network was modeled under physiological and pathological conditions. Thus, we identified a self-reinforcing loop for ZEB1 expression and found that the SETD1B associated active chromatin mark H3K4me3 was enriched at the ZEB1 promoter in EMT cells. Moreover, clinical evaluation of CRC patient data showed that the simultaneous high expression of ZEB1 and SETD1B was correlated with the worst prognosis. Here we report that the expression of chromatin modifiers is remarkably dysregulated in EMT cells. SETD1B was identified as a new ZEB1 target in vitro and in vivo. Our study demonstrates a novel example of an activator role of ZEB1 for the epigenetic landscape in colorectal tumor cells.
Collapse
Affiliation(s)
- Pablo Lindner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Sushmita Paul
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Markus Eckstein
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Chuanpit Hampel
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Julienne K Muenzner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Husayn P Ahmed
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | | | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, Comprehensice Cancer Center, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Regine Schneider-Stock
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany. .,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.
| |
Collapse
|