1
|
Savige J, Renieri A, Ars E, Daga S, Pinto AM, Rothe H, Gale DP, Aksenova M, Cerkauskaite A, Bielska O, Lipska-Zietkiewicz B, Gibson JT. Digenic Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:1697-1706. [PMID: 35675912 PMCID: PMC9718039 DOI: 10.2215/cjn.03120322] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Digenic Alport syndrome refers to the inheritance of pathogenic variants in COL4A5 plus COL4A3 or COL4A4 or in COL4A3 plus COL4A4 Where digenic Alport syndrome includes a pathogenic COL4A5 variant, the consequences depend on the sex of the affected individual, COL4A5 variant "severity," and the nature of the COL4A3 or COL4A4 change. A man with a pathogenic COL4A5 variant has all his collagen IV α3α4α5-heterotrimers affected, and an additional COL4A3 or COL4A4 variant may not worsen disease. A woman with a pathogenic COL4A5 variant has on average 50% of her heterotrimers affected, which is increased to 75% with a further COL4A3 or COL4A4 variant and associated with a higher risk of proteinuria. In digenic Alport syndrome with pathogenic COL4A3 and COL4A4 variants, 75% of the heterotrimers are affected. The COL4A3 and COL4A4 genes occur head-to-head on chromosome 2, and inheritance is autosomal dominant when both variants affect the same chromosome (in cis) or recessive when they affect different chromosomes (in trans). This form of digenic disease results in increased proteinuria and a median age of kidney failure intermediate between autosomal dominant and autosomal recessive Alport syndrome. Previous guidelines have suggested that all pathogenic or likely pathogenic digenic variants should be identified and reported. Affected family members should be identified, treated, and discouraged from kidney donation. Inheritance within a family is easier to predict if the two variants are considered independently and if COL4A3 and COL4A4 variants are known to be inherited on the same or different chromosomes.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetics Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisabet Ars
- Department of Nephrology, Molecular Biology Laboratory , Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sergio Daga
- Medical Genetics Unit, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Maria Pinto
- Genetics Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Hansjorg Rothe
- Centre for Nephrology and Metabolic Disorders, Weisswasser, Germany
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Marina Aksenova
- Department of Nephrology, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Agne Cerkauskaite
- Division of Diagnostics and Treatment of Rare Kidney and Metabolic Diseases, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Olga Bielska
- Centre for Rare Diseases and Clinical Genetics Unit, Medical University of Gdansk, Gdansk, Poland
| | - Beata Lipska-Zietkiewicz
- Centre for Rare Diseases and Clinical Genetics Unit, Medical University of Gdansk, Gdansk, Poland
| | - Joel T. Gibson
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Savige J, Lipska-Zietkiewicz BS, Watson E, Hertz JM, Deltas C, Mari F, Hilbert P, Plevova P, Byers P, Cerkauskaite A, Gregory M, Cerkauskiene R, Ljubanovic DG, Becherucci F, Errichiello C, Massella L, Aiello V, Lennon R, Hopkinson L, Koziell A, Lungu A, Rothe HM, Hoefele J, Zacchia M, Martic TN, Gupta A, van Eerde A, Gear S, Landini S, Palazzo V, al-Rabadi L, Claes K, Corveleyn A, Van Hoof E, van Geel M, Williams M, Ashton E, Belge H, Ars E, Bierzynska A, Gangemi C, Renieri A, Storey H, Flinter F. Guidelines for Genetic Testing and Management of Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:143-154. [PMID: 34930753 PMCID: PMC8763160 DOI: 10.2215/cjn.04230321] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic testing for pathogenic COL4A3-5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3-COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| | | | - Elizabeth Watson
- South West Genetic Laboratory Hub, North Bristol Trust, Bristol, United Kingdom
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, University of Cyprus Medical School, Nicosia, Cyprus
| | - Francesca Mari
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Pascale Hilbert
- Departement de Biologie Moleculaire, Institute de Pathologie et de Genetique, Gosselies, Belgium
| | - Pavlina Plevova
- Department of Medical Genetics, University Hospital of Ostrava, Ostrava, Czech Republic
- Department of Biomedical Sciences, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Peter Byers
- Department of Pathology, University of Washington, Seattle, Washington
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Agne Cerkauskaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Martin Gregory
- Division of Nephrology, Department of Medicine, University of Utah Health, Salt Lake City, Utah
| | - Rimante Cerkauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danica Galesic Ljubanovic
- Department of Pathology, University of Zagreb, School of Medicine, Dubrava University Hospital, Zagreb, Croatia
| | | | | | - Laura Massella
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valeria Aiello
- Department of Experimental Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Louise Hopkinson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ania Koziell
- School of Immunology and Microbial Sciences, Faculty of Life Sciences, King's College London, London, United Kingdom
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Julia Hoefele
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | | | - Asheeta Gupta
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | | | | | - Samuela Landini
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laith al-Rabadi
- Health Sciences Centre, University of Utah, Salt Lake City, Utah
| | - Kathleen Claes
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Micheel van Geel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maggie Williams
- Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital, Southmead, United Kingdom
| | - Emma Ashton
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, United Kingdom
| | - Hendica Belge
- Institut de Pathologie et de Génétique, Center for Human Genetics, Gosselies, Belgium
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autonoma de Barcelona, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Agnieszka Bierzynska
- Bristol Renal Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Concetta Gangemi
- Division of Nephrology and Dialysis, University Hospital of Verona, Verona, Italy
| | - Alessandra Renieri
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Helen Storey
- Molecular Genetics, Viapath Laboratories, Guy’s Hospital, London, United Kingdom
| | - Frances Flinter
- Department of Clinical Genetics, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|