1
|
Abolhasani FS, Vaghefinanekaran N, Yarahmadi A, Akrami S, Mirmahdavi S, Yousefi MH, Afkhami H, Shafiei M. Outer membrane vesicles in gram-negative bacteria and its correlation with pathogenesis. Front Immunol 2025; 16:1541636. [PMID: 40236702 PMCID: PMC11996793 DOI: 10.3389/fimmu.2025.1541636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
There is a widespread distribution of gram-negative bacteria worldwide, which are responsible for the deaths of numerous patients each year. The illnesses they cause can be localized and systemic, and these bacteria possess several key virulence factors that contribute to their pathogenicity. In recent years, several distinct mechanisms of pathogenesis have evolved that remain largely unknown to scientists and medical experts. Among these, outer membrane vesicles (OMVs) are undoubtedly one of the most significant factors influencing virulence. OMVs contain various bacterial compounds and can have diverse effects on host organisms and the immune system, potentially exacerbating disease and inflammation while evading immune responses. This review comprehensively examines the role of OMVs in bacterial pathogenesis, their interaction with host cells, and their potential biomedical applications. Understanding the molecular mechanisms governing OMV biogenesis and function could pave the way for novel antimicrobial strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mirmahdavi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hasan Yousefi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Afkhami
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Beig M, Parvizi E, Navidifar T, Bostanghadiri N, Mofid M, Golab N, Sholeh M. Geographical mapping and temporal trends of Acinetobacter baumannii carbapenem resistance: A comprehensive meta-analysis. PLoS One 2024; 19:e0311124. [PMID: 39680587 PMCID: PMC11649148 DOI: 10.1371/journal.pone.0311124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is of critical concern in healthcare settings, leading to limited treatment options. In this study, we conducted a comprehensive meta-analysis to assess the prevalence of CRAB by examining temporal, geographic, and bias-related variations. METHODS We systematically searched prominent databases, including Scopus, PubMed, Web of Science, and EMBASE. Quality assessment was performed using the JBI checklist. Subgroup analyses were performed based on the COVID-19 timeframes, years, countries, continents, and bias levels, antimicrobial susceptivity test method and guidelines. RESULTS Our comprehensive meta-analysis, which included 795 studies across 80 countries from 1995 to 2023, revealed a surge in carbapenem resistance among A. baumannii, imipenem (76.1%), meropenem (73.5%), doripenem (73.0%), ertapenem (83.7%), and carbapenems (74.3%). Temporally, 2020-2023 witnessed significant peaks, particularly in carbapenems (81.0%) and meropenem (80.7%), as confirmed by meta-regression, indicating a steady upward trend. CONCLUSION This meta-analysis revealed an alarmingly high resistance rate to CRAB as a global challenge, emphasizing the urgent need for tailored interventions. Transparency, standardized methodologies, and collaboration are crucial for the accurate assessment and maintenance of carbapenem efficacy.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Parvizi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Tahereh Navidifar
- Shoushtar Faculty of Medical Sciences, Department of Basic Sciences, Shoushtar, Iran
| | - Narjes Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mofid
- School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Narges Golab
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Asadi S, Nayeri-Fasaei B, Zahraei-Salehi T, Yahya-Rayat R, Shams N, Sharifi A. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli. BMC Microbiol 2023; 23:55. [PMID: 36864390 PMCID: PMC9983188 DOI: 10.1186/s12866-023-02797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Plant-derived compounds can be used as antimicrobial agents in medicines and as food preservatives. These compounds can be applied along with other antimicrobial agents to strengthen the effect and/or reduce the required treatment dose. RESULTS In the present study, the antibacterial, anti-biofilm and quorum sensing inhibitory activity of carvacrol alone and in combination with the antibiotic cefixime against Escherichia coli was investigated. The MIC and MBC values for carvacrol were 250 μg/mL. In the checkerboard test, carvacrol showed a synergistic interaction with cefixime against E. coli (FIC index = 0.5). Carvacrol and cefixime significantly inhibited biofilm formation at MIC/2 (125 and 62.5 μg/mL), MIC/4 (62.5 and 31.25 μg/mL) and MIC/8 (31.25 and 15.625 μg/mL) for carvacrol and cefixime, respectively. The antibacterial and anti-biofilm potential effect of carvacrol confirmed by the scanning electron microscopy. Real-time quantitative reverse transcription PCR revealed significant down-regulation of the luxS and pfs genes following treatment with a MIC/2 (125 μg/mL) concentration of carvacrol alone and of only pfs gene following treatment with MIC/2 of carvacrol in combination with MIC/2 of cefixime (p < 0.05). CONCLUSIONS Because of the significant antibacterial and anti-biofilm activity of carvacrol, the present study examines this agent as an antibacterial drug of natural origin. The results indicate that in this study the best antibacterial and anti-biofilm properties are for the combined use of cefixime and carvacrol.
Collapse
Affiliation(s)
- Sepideh Asadi
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran
| | - Bahar Nayeri-Fasaei
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran.
| | - Taghi Zahraei-Salehi
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran
| | - Ramak Yahya-Rayat
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran
| | - Nemat Shams
- Department of Pathobiology, Lorestan University, Faculty of Veterinary Medicine, Tehran, Iran
| | - Aram Sharifi
- Department of Animal Science, University of Kurdistan, Faculty of Agriculture, Sanandaj, Iran
| |
Collapse
|
4
|
The adeH and adeS Efflux Pump Genes in Imipenem and Colistin-Resistant Acinetobacter baumannii Clinical Isolates. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
5
|
Hashemizadeh Z, Hatam G, Fathi J, Aminazadeh F, Hosseini-Nave H, Hadadi M, Shakib NH, Kholdi S, Bazargani A. The Spread of Insertion Sequences Element and Transposons in Carbapenem Resistant Acinetobacter baumannii in a Hospital Setting in Southwestern Iran. Infect Chemother 2022; 54:275-286. [PMID: 35706082 PMCID: PMC9259918 DOI: 10.3947/ic.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is one of the most important hospital pathogenic bacteria that cause infectious diseases. The present study aimed to determine the frequency of carbapenem resistance genes in association with transposable elements and molecular typing of carbapenem-resistant A. baumannii bacteria collected from patients in Shiraz, Iran. MATERIALS AND METHODS A total of 170 carbapenem-resistant A. baumannii isolates were obtained from different clinical specimens in two hospitals. The minimum inhibitory concentrations (MIC) of imipenem were determined and the prevalence of OXA Carbapenemases, Metallo-β-lactamases genes, insertion sequences (IS) elements, and transposons were evaluated by the polymerase chain reaction (PCR) method. Finally, molecular typing of the isolates was performed by the Enterobacterial Repetitive Intergenic Consensus-PCR method. RESULTS The MICs ranged from 16 to 1,024 µg/mL for imipenem-resistant A. baumannii isolates. Out of the 170 carbapenem resistant A. baumannii isolates, blaOXA-24-like (94, 55.3%) followed by blaOXA-23-like (71, 41.7%) were predominant. In addition, A. baumannii isolates carried blaVIM (71, 41.7%), blaGES (32, 18.8%), blaSPM (4, 2.3%), and blaKPC (1, 0.6%). Moreover, ISAba1 (94.2%) and Tn2009 (39.2%) were the most frequent transposable elements. Furthermore, (71, 44.0%) and (161, 94.7%) of the ISAba1 of the isolates were associated with blaOXA-23 and blaOXA-51 genes, respectively. Besides (3, 1.7%), (1, 0.6%) and (5, 2.9%) of blaOXA-23 were associated with IS18, ISAba4, and ISAba2, respectively. Considering an 80.0% cut off, clusters and four singletons were detected. CONCLUSION According to the results, transposable elements played an important role in the development of resistance genes and resistance to carbapenems. The results also indicated carbapenem-resistant A. baumannii bacteria as a public health concern.
Collapse
Affiliation(s)
- Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Aminazadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Hosseini-Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahtab Hadadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Hosseinzadeh Shakib
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sodeh Kholdi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Bazargani
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Frequency of cbrA, cbrB, ndvB, and phoBR Genes in Relation to Biofilm Formation in Pseudomonas aeruginosa Clinical Isolates. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.2.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|