1
|
Santos GAC, Dropa M, Martone-Rocha S, Peternella FAS, Veiga DPB, Razzolini MTP. Microbiological monitoring of coagulase-negative Staphylococcus in public drinking water fountains: Pathogenicity factors, antimicrobial resistance and potential health risks. JOURNAL OF WATER AND HEALTH 2023; 21:361-371. [PMID: 37338316 PMCID: wh_2023_274 DOI: 10.2166/wh.2023.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The presence of opportunistic bacteria such as coagulase-negative Staphylococcus (CoNS) in drinking water poses public health concerns because of its potential to cause human infection and due to its antimicrobial resistance (AMR) diversity. This study evaluated the occurrence, virulence markers and AMR of CoNS in 468 drinking water samples from 15 public fountains located in four urban parks of São Paulo city (Brazil). Out of 104 samples positive for the presence of Staphylococcus genus, we detected CoNS in 75 of them (16%), which did not meet the Brazilian sanitary standards for residual chlorine. All isolates were of concern to public health for being responsible for infection in humans from low to high severity, nine of them are considered the most of concern due to 63.6% being multiresistant to antimicrobials. The results demonstrated that CoNS in drinking water must not be neglected. It is concluded that the presence of resistant staphylococci in drinking water is a potential health risk, which urges feasible and quick control measures to protect human health, especially in crowded public places.
Collapse
Affiliation(s)
- G A C Santos
- School of Public Health, University of São Paulo, São Paulo, Brazil E-mail: ; NARA - Center for Research in Environmental Risk Assessment, São Paulo, Brazil
| | - M Dropa
- School of Public Health, University of São Paulo, São Paulo, Brazil E-mail:
| | - S Martone-Rocha
- School of Public Health, University of São Paulo, São Paulo, Brazil E-mail:
| | - F A S Peternella
- School of Public Health, University of São Paulo, São Paulo, Brazil E-mail:
| | - Denise P B Veiga
- NARA - Center for Research in Environmental Risk Assessment, São Paulo, Brazil
| | - Maria Tereza Pepe Razzolini
- School of Public Health, University of São Paulo, São Paulo, Brazil E-mail: ; NARA - Center for Research in Environmental Risk Assessment, São Paulo, Brazil
| |
Collapse
|
2
|
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Whole-Genome Sequence of Multidrug-Resistant Methicillin-Resistant Staphylococcus epidermidis Carrying Biofilm-Associated Genes and a Unique Composite of SCCmec. Antibiotics (Basel) 2022; 11:antibiotics11070861. [PMID: 35884115 PMCID: PMC9312184 DOI: 10.3390/antibiotics11070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus epidermidis is part of the normal human flora that has recently become an important opportunistic pathogen causing nosocomial infections and tends to be multidrug-resistant. In this investigation, we aimed to study the genomic characteristics of methicillin-resistant S. epidermidis isolated from clinical specimens. Three isolates were identified using biochemical tests and evaluated for drug susceptibility. Genomic DNA sequences were obtained using Illumina, and were processed for analysis using various bioinformatics tools. The isolates showed multidrug resistance to most of the antibiotics tested in this study, and were identified with three types (III(3A), IV(2B&5), and VI(4B)) of the mobile genetic element SCCmec that carries the methicillin resistance gene (mecA) and its regulators (mecI and mecR1). A total of 11 antimicrobial resistance genes (ARGs) was identified as chromosomally mediated or in plasmids; these genes encode for proteins causing decreased susceptibility to methicillin (mecA), penicillin (blaZ), fusidic acid (fusB), fosfomycin (fosB), tetracycline (tet(K)), aminoglycosides (aadD, aac(6′)-aph(2′’)), fluoroquinolone (MFS antibiotic efflux pump), trimethoprim (dfrG), macrolide (msr(A)), and chlorhexidine (qacA)). Additionally, the 9SE strain belongs to the globally disseminated ST2, and harbors biofilm-formation genes (icaA, icaB, icaC, icaD, and IS256) with phenotypic biofilm production capability. It also harbors the fusidic acid resistance gene (fusB), which could increase the risk of device-associated healthcare infections, and 9SE has been identified as having a unique extra SCC gene (ccrB4); this new composite element of the ccr type needs more focus to better understand its role in the drug resistance mechanism.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-549087515
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan;
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
3
|
Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SKMR, Stájer A, Baráth Z, Szabó D, Urbán E, Gajdács M. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens 2022; 11:pathogens11040471. [PMID: 35456146 PMCID: PMC9031815 DOI: 10.3390/pathogens11040471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.
Collapse
Affiliation(s)
- Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
- Correspondence:
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria;
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624 Pécs, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| |
Collapse
|