1
|
Loss of TBX3 enhances pancreatic progenitor generation from human pluripotent stem cells. Stem Cell Reports 2021; 16:2617-2627. [PMID: 34653400 PMCID: PMC8580886 DOI: 10.1016/j.stemcr.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Tbx3 has been identified as a regulator of liver development in the mouse, but its function in human liver development remains unknown. TBX3 mutant human pluripotent stem cell (PSC) lines were generated using CRISPR/Cas9 genome editing. TBX3 loss led to impaired liver differentiation and an upregulation of pancreatic gene expression, including PDX1, during a hepatocyte differentiation protocol. Other pancreatic genes, including NEUROG3 and NKX2.2, displayed more open chromatin in the TBX3 mutant hepatoblasts. Using a pancreatic differentiation protocol, cells lacking TBX3 generated more pancreatic progenitors and had an enhanced pancreatic gene expression signature at the expense of hepatic gene expression. These data highlight a potential role of TBX3 in regulating hepatic and pancreatic domains during foregut patterning, with implications for enhancing the generation of pancreatic progenitors from PSCs. TBX3 null PSCs have impaired hepatocyte differentiation capacity TBX3 null hepatocytes have aberrant expression of pancreatic genes, including PDX1 TBX3 null PSCs have enhanced differentiation capacity into pancreatic progenitors Loss of TBX3 leads to increased chromatin accessibility of many pancreatic genes
Collapse
|
2
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
3
|
Wang HC, Meng QC, Shan ZZ, Yuan Z, Huang XY. Overexpression of Tbx3 predicts poor prognosis of patients with resectable pancreatic carcinoma. Asian Pac J Cancer Prev 2015; 16:1397-401. [PMID: 25743805 DOI: 10.7314/apjcp.2015.16.4.1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine the expressions of Tbx3, a member of subgroup belonging to T-box family, and its prognostic value in pancreatic carcinoma. MATERIALS AND METHODS We determined the expression levels of Tbx3 on both mRNA and protein levels in 30 pairs of fresh tumor tissues and paratumor tissues by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. In addition, protein level of Tbx3 were identified using immunochemistry in 80 pairs of paraffin-embedded specimen. The correlations between Tbx3 expression and various clinicopathological parameters as well as overall survival were evaluated. RESULTS Tbx3 mRNA and protein levels in tumor tissues were significantly higher than in the paratumor tissues by qRT-PCR (0.05 ±0.007 vs. 0.087±0.001, p<0.001) and western blotting (1.134±0.043 vs. 0.287±0.017, p<0.001). The statistical analysis based on immunohistochemical evaluation suggested that Tbx3 aberrant expression was significantly associated with several conventional clinicopathological variables, such as gender, age, tumor position, preoperative CA19-9 level, pathological T staging and N staging. Univariate and multivariate analyses revealed that Tbx3 expression was an independent prognostic factor for overall survival (<0.001). CONCLUSIONS Our results suggest that overexpression of Tbx3 is associated with poor prognosis of pancreatic cancer patients. However, additional clinical trials are needed to accurately validate this observation.
Collapse
Affiliation(s)
- Hong-Cheng Wang
- Department of General Surgery, Sixth People's Hospital Affiliated Shanghai Jiao Tong University, Yi-shan Road, Shanghai, China E-mail :
| | | | | | | | | |
Collapse
|
4
|
Papaioannou VE. The T-box gene family: emerging roles in development, stem cells and cancer. Development 2014; 141:3819-33. [PMID: 25294936 DOI: 10.1242/dev.104471] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Osipovich AB, Long Q, Manduchi E, Gangula R, Hipkens SB, Schneider J, Okubo T, Stoeckert CJ, Takada S, Magnuson MA. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3. Development 2014; 141:2939-49. [PMID: 25053427 PMCID: PMC4197673 DOI: 10.1242/dev.104810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1GFPCre reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Elisabetta Manduchi
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rama Gangula
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Susan B Hipkens
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Judsen Schneider
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Christian J Stoeckert
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Wensing LA, Campos AH. TBX3, a downstream target of TGF-β1, inhibits mesangial cell apoptosis. Exp Cell Res 2014; 328:340-50. [PMID: 25158279 DOI: 10.1016/j.yexcr.2014.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 08/13/2014] [Accepted: 08/17/2014] [Indexed: 11/17/2022]
Abstract
Chronic kidney disease (CKD) is an increasingly common condition characterized by progressive loss of functional nephrons leading to renal failure. TGF-β1-induced mesangial cell (MC) phenotype alterations have been linked to the genesis of CKD. Here we show that TGF-β1 regulates TBX3 gene expression in MC. This gene encodes for two main isoforms, TBX3.1 and TBX3+2α. TBX3.1 has been implicated in cell immortalization, proliferation and apoptosis by inhibiting p14(ARF)-Mdm2-p53 pathway, while TBX3+2α role has not been defined. We demonstrated that TBX3 overexpression abrogated MC apoptosis induced by serum deprivation. Moreover, we observed an enhancement in TBX3 protein expression both in glomerular and tubular regions in the model of 5/6 nephrectomy, temporally related to increased expression of TGF-β1, type IV collagen and fibronectin. Our results indicate that TBX3 acts as an anti-apoptotic factor in MC in vitro and may be involved in the mechanism by which TGF-β1 induces glomerulosclerosis and tubular fibrosis during the progression of nephropathies.
Collapse
Affiliation(s)
- Lislaine A Wensing
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, Morumbi, 2SS/Bloco A., São Paulo, São Paulo CEP 05651-901, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre H Campos
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, Morumbi, 2SS/Bloco A., São Paulo, São Paulo CEP 05651-901, Brazil.
| |
Collapse
|
7
|
Takashima Y, Suzuki A. Regulation of organogenesis and stem cell properties by T-box transcription factors. Cell Mol Life Sci 2013; 70:3929-45. [PMID: 23479132 PMCID: PMC11113830 DOI: 10.1007/s00018-013-1305-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 12/28/2022]
Abstract
T-box transcription factors containing the common DNA-binding domain T-box contribute to the organization of multiple tissues in vertebrates and invertebrates. In mammals, 17 T-box genes are divided into five subfamilies depending on their amino acid homology. The proper distribution and expression of individual T-box transcription factors in different tissues enable regulation of the proliferation and differentiation of tissue-specific stem cells and progenitor cells in a suitable time schedule for tissue organization. Consequently, uncontrollable expressions of T-box genes induce abnormal tissue organization, and eventually cause various diseases with malformation and malfunction of tissues and organs. Furthermore, some T-box transcription factors are essential for maintaining embryonic stem cell pluripotency, improving the quality of induced pluripotent stem cells, and inducing cell-lineage conversion of differentiated cells. These lines of evidence indicate fundamental roles of T-box transcription factors in tissue organization and stem cell properties, and suggest that these transcription factors will be useful for developing therapeutic approaches in regenerative medicine.
Collapse
Affiliation(s)
- Yasuo Takashima
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
8
|
Washkowitz AJ, Gavrilov S, Begum S, Papaioannou VE. Diverse functional networks of Tbx3 in development and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:273-83. [PMID: 22334480 DOI: 10.1002/wsbm.1162] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The T-box transcription factor Tbx3 plays multiple roles in normal development and disease. In order to function in different tissues and on different target genes, Tbx3 binds transcription factors or other cofactors specific to temporal or spatial locations. Examining the development of the mammary gland, limbs, and heart as well as the biology of stem cells and cancer provides insights into the diverse and common functions that Tbx3 can perform. By either repressing or activating transcription of target genes in a context-dependent manner, Tbx3 is able to modulate differentiation of immature progenitor cells, control the rate of cell proliferation, and mediate cellular signaling pathways. Because the direct regulators of these cellular processes are highly context-dependent, it is essential that Tbx3 has the flexibility to regulate transcription of a large group of targets, but only become a active on a small cohort of them at any given time or place. Moreover, Tbx3 must be responsive to the variety of different upstream factors that are present in different tissues. Only by understanding the network of genes, proteins, and molecules with which Tbx3 interacts can we hope to understand the role that Tbx3 plays in normal development and how its aberrant expression can lead to disease. Because of its myriad functions in disparate developmental and disease contexts, Tbx3 is an ideal candidate for a systems-based approach to genetic function and interaction.
Collapse
Affiliation(s)
- Andrew J Washkowitz
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|