1
|
Nonarath HJT, Simpson SL, Slobodianuk TL, Tran H, Collery RF, Dinculescu A, Link BA. The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors. PLoS Genet 2025; 21:e1011205. [PMID: 40067805 PMCID: PMC11925288 DOI: 10.1371/journal.pgen.1011205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular dysfunction. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. The retinas of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not reduce the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.
Collapse
Affiliation(s)
- Hannah J T Nonarath
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha L Simpson
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Tricia L Slobodianuk
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hai Tran
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ross F Collery
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States of America
| | - Brian A Link
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
2
|
Nonarath HJT, Simpson SL, Slobodianuk TL, Collery RF, Dinculescu A, Link BA. The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582878. [PMID: 38464015 PMCID: PMC10925332 DOI: 10.1101/2024.02.29.582878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular balance issues. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. Retina of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not rescue the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.
Collapse
Affiliation(s)
- Hannah J. T. Nonarath
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Samantha L. Simpson
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Tricia L. Slobodianuk
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ross F. Collery
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32611
| | - Brian A. Link
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
3
|
Usher syndrome IIIA: a review of the disorder and preclinical research advances in therapeutic approaches. Hum Genet 2022; 141:759-783. [PMID: 35320418 DOI: 10.1007/s00439-022-02446-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/27/2022]
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive pigmentary retinopathy, and vestibular dysfunction. The degree and onset of hearing loss vary among subtypes I, II, and III, while blindness often occurs in the second to fourth decades of life. Usher type III (USH3), characterized by postlingual progressive sensorineural hearing loss, varying levels of vestibular dysfunction, and varying degrees of visual impairment, typically manifests in the first to second decades of life. While USH3 is rare, it is highly prevalent in certain populations. RP61, USH3, and USH3A symbolize the same disorder, with the latter symbol used more frequently in recent literature. This review focuses on the clinical features, epidemiology, molecular genetics, treatment, and research advances for sensory deficits in USH3A.
Collapse
|
4
|
Dinculescu A, Link BA, Saperstein DA. Retinal Gene Therapy for Usher Syndrome: Current Developments, Challenges, and Perspectives. Int Ophthalmol Clin 2021; 61:109-124. [PMID: 34584048 PMCID: PMC8478317 DOI: 10.1097/iio.0000000000000378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Xu L, Bolch SN, Santiago CP, Dyka FM, Akil O, Lobanova ES, Wang Y, Martemyanov KA, Hauswirth WW, Smith WC, Handa JT, Blackshaw S, Ash JD, Dinculescu A. Clarin-1 expression in adult mouse and human retina highlights a role of Müller glia in Usher syndrome. J Pathol 2019; 250:195-204. [PMID: 31625146 PMCID: PMC7003947 DOI: 10.1002/path.5360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
Usher syndrome type 3 (USH3) is an autosomal recessively inherited disorder caused by mutations in the gene clarin‐1 (CLRN1), leading to combined progressive hearing loss and retinal degeneration. The cellular distribution of CLRN1 in the retina remains uncertain, either because its expression levels are low or because its epitopes are masked. Indeed, in the adult mouse retina, Clrn1 mRNA is developmentally downregulated, detectable only by RT‐PCR. In this study we used the highly sensitive RNAscope in situ hybridization assay and single‐cell RNA‐sequencing techniques to investigate the distribution of Clrn1 and CLRN1 in mouse and human retina, respectively. We found that Clrn1 transcripts in mouse tissue are localized to the inner retina during postnatal development and in adult stages. The pattern of Clrn1 mRNA cellular expression is similar in both mouse and human adult retina, with CLRN1 transcripts being localized in Müller glia, and not photoreceptors. We generated a novel knock‐in mouse with a hemagglutinin (HA) epitope‐tagged CLRN1 and showed that CLRN1 is expressed continuously at the protein level in the retina. Following enzymatic deglycosylation and immunoblotting analysis, we detected a single CLRN1‐specific protein band in homogenates of mouse and human retina, consistent in size with the main CLRN1 isoform. Taken together, our results implicate Müller glia in USH3 pathology, placing this cell type to the center of future mechanistic and therapeutic studies to prevent vision loss in this disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lei Xu
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Susan N Bolch
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Clayton P Santiago
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Frank M Dyka
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Omar Akil
- Department of Otolaryngology-HNS, University of California, San Francisco, CA, USA
| | | | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | | | - W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - James T Handa
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Mastrangelo S, Sottile G, Sutera AM, Di Gerlando R, Tolone M, Moscarelli A, Sardina MT, Portolano B. Genome-wide association study reveals the locus responsible for microtia in Valle del Belice sheep breed. Anim Genet 2018; 49:636-640. [PMID: 30160299 DOI: 10.1111/age.12719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
Microtia is a congenital deformity of the outer ear with phenotypes varying from a small auricle to total absence (anotia). The genetic basis is still poorly understood, and very few studies have been performed in sheep. Valle del Belice sheep is a breed showing microtia. The aim of this study was to identify the potential genomic regions involved in microtia in sheep. A total of 40 individuals, 20 with microtia and 20 normal, were genotyped with the Illumina OvineSNP50 BeadChip. The comparison among the results from a genome-wide association study, Fisher's exact test and FST analysis revealed a single strong association signal: rs419889303 on chromosome 1, located within intron 3 of the CLRN1 gene. Our study suggests for the first time that this novel candidate gene is responsible for microtia in sheep. Additional analysis based on the sequencing would help confirm our findings and allow for the proposal of a precise genetic basis for microtia in sheep.
Collapse
Affiliation(s)
- S Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - G Sottile
- Dipartimento Scienze Economiche, Aziendali e Statistiche, University of Palermo, 90128, Palermo, Italy
| | - A M Sutera
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - R Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - M Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - A Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - M T Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - B Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
7
|
Dulon D, Papal S, Patni P, Cortese M, Vincent PF, Tertrais M, Emptoz A, Tlili A, Bouleau Y, Michel V, Delmaghani S, Aghaie A, Pepermans E, Alegria-Prevot O, Akil O, Lustig L, Avan P, Safieddine S, Petit C, El-Amraoui A. Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. J Clin Invest 2018; 128:3382-3401. [PMID: 29985171 DOI: 10.1172/jci94351] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Clarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4-/-) and postnatal hair cell-specific conditional (Clrn1ex4fl/fl Myo15-Cre+/-) knockout mice. Clrn1ex4-/- mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/- mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavβ2 auxiliary subunit and the PDZ domain-containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus-mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/- mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients.
Collapse
Affiliation(s)
- Didier Dulon
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Samantha Papal
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Pranav Patni
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Matteo Cortese
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Philippe Fy Vincent
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Margot Tertrais
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Alice Emptoz
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Abdelaziz Tlili
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Yohan Bouleau
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, Bordeaux, France
| | - Vincent Michel
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Sedigheh Delmaghani
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Alain Aghaie
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Elise Pepermans
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Olinda Alegria-Prevot
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| | - Omar Akil
- Department of Otolaryngology-Head and Neck Surgery, UCSF, San Francisco, California, USA
| | - Lawrence Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, USA
| | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Université d'Auvergne; Biophysique Médicale, Centre Jean Perrin, Clermont-Ferrand, France
| | - Saaid Safieddine
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| | - Christine Petit
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, Paris, France
| |
Collapse
|
8
|
Characterization of the Tetraspan Junctional Complex (4JC) superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:402-414. [PMID: 27916633 DOI: 10.1016/j.bbamem.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships.
Collapse
|
9
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
10
|
Dinculescu A, Stupay RM, Deng WT, Dyka FM, Min SH, Boye SL, Chiodo VA, Abrahan CE, Zhu P, Li Q, Strettoi E, Novelli E, Nagel-Wolfrum K, Wolfrum U, Smith WC, Hauswirth WW. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS One 2016; 11:e0148874. [PMID: 26881841 PMCID: PMC4755610 DOI: 10.1371/journal.pone.0148874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.
Collapse
Affiliation(s)
- Astra Dinculescu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Rachel M. Stupay
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Wen-Tao Deng
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Frank M. Dyka
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Seok-Hong Min
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Sanford L. Boye
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Vince A. Chiodo
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Carolina E. Abrahan
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Ping Zhu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Qiuhong Li
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | | | | - Kerstin Nagel-Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - W. Clay Smith
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | |
Collapse
|
11
|
Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein. J Neurosci 2015; 35:10188-201. [PMID: 26180195 DOI: 10.1523/jneurosci.1096-15.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. SIGNIFICANCE STATEMENT Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. This approach illuminates the role of clarin-1 and the molecular mechanism linked to the CLRN1(N48K) mutation in sensory hair cells of the inner ear. Additionally, the investigation provided an in vivo model to guide future drug discovery to rescue the hCLRN1(N48K) in hair cells.
Collapse
|
12
|
Toms M, Bitner-Glindzicz M, Webster A, Moosajee M. Usher syndrome: a review of the clinical phenotype, genes and therapeutic strategies. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1033403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta Mol Basis Dis 2014; 1852:406-20. [PMID: 25481835 DOI: 10.1016/j.bbadis.2014.11.020] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Usher syndrome (USH), clinically and genetically heterogeneous, is the leading genetic cause of combined hearing and vision loss. USH is classified into three types, based on the hearing and vestibular symptoms observed in patients. Sixteen loci have been reported to be involved in the occurrence of USH and atypical USH. Among them, twelve have been identified as causative genes and one as a modifier gene. Studies on the proteins encoded by these USH genes suggest that USH proteins interact among one another and function in multiprotein complexes in vivo. Although their exact functions remain enigmatic in the retina, USH proteins are required for the development, maintenance and function of hair bundles, which are the primary mechanosensitive structure of inner ear hair cells. Despite the unavailability of a cure, progress has been made to develop effective treatments for this disease. In this review, we focus on the most recent discoveries in the field with an emphasis on USH genes, protein complexes and functions in various tissues as well as progress toward therapeutic development for USH.
Collapse
Affiliation(s)
- Pranav Mathur
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA; Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
14
|
Ogun O, Zallocchi M. Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly. ACTA ACUST UNITED AC 2014; 207:375-91. [PMID: 25365995 PMCID: PMC4226736 DOI: 10.1083/jcb.201404016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clarin-1 is a four-transmembrane protein expressed by hair cells and photoreceptors. Mutations in its corresponding gene are associated with Usher syndrome type 3, characterized by late-onset and progressive hearing and vision loss in humans. Mice carrying mutations in the clarin-1 gene have hair bundle dysmorphology and a delay in synapse maturation. In this paper, we examined the expression and function of clarin-1 in zebrafish hair cells. We observed protein expression as early as 1 d postfertilization. Knockdown of clarin-1 resulted in inhibition of FM1-43 incorporation, shortening of the kinocilia, and mislocalization of ribeye b clusters. These phenotypes were fully prevented by co-injection with clarin-1 transcript, requiring its C-terminal tail. We also observed an in vivo interaction between clarin-1 and Pcdh15a. Altogether, our results suggest that clarin-1 is functionally important for mechanotransduction channel activity and for proper localization of synaptic components, establishing a critical role for clarin-1 at the apical and basal poles of hair cells.
Collapse
Affiliation(s)
- Oluwatobi Ogun
- Sensory Neuroscience Department, Boys Town National Research Hospital, Omaha, NE 68131
| | - Marisa Zallocchi
- Sensory Neuroscience Department, Boys Town National Research Hospital, Omaha, NE 68131
| |
Collapse
|
15
|
Beck BB, Phillips JB, Bartram MP, Wegner J, Thoenes M, Pannes A, Sampson J, Heller R, Göbel H, Koerber F, Neugebauer A, Hedergott A, Nürnberg G, Nürnberg P, Thiele H, Altmüller J, Toliat MR, Staubach S, Boycott KM, Valente EM, Janecke AR, Eisenberger T, Bergmann C, Tebbe L, Wang Y, Wu Y, Fry AM, Westerfield M, Wolfrum U, Bolz HJ. Mutation of POC1B in a severe syndromic retinal ciliopathy. Hum Mutat 2014; 35:1153-62. [PMID: 25044745 PMCID: PMC4425427 DOI: 10.1002/humu.22618] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/12/2014] [Indexed: 12/20/2022]
Abstract
We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next-generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.
Collapse
Affiliation(s)
- Bodo B. Beck
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | | | - Malte P. Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, 97401 Eugene, Oregon, USA
| | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andrea Pannes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Josephina Sampson
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom, LE7 9HN
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Heike Göbel
- Department of Pathology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Friederike Koerber
- Department of Radiology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Antje Neugebauer
- Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andrea Hedergott
- Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mohammad R. Toliat
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Simon Staubach
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, K1H 8L1 Ottawa, Canada
| | - Enza Maria Valente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza Institute, 71013 San Giovanni Rotondo, Italy
- Department of Medicine and Surgery, University of Salerno, 84080 Salerno, Italy
| | - Andreas R. Janecke
- Department of Pediatrics I, and Division of Human Genetics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
- Department of Medicine, Renal Division, University of Freiburg Medical Center, 79095 Freiburg, Germany
| | - Lars Tebbe
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg, University of Mainz, 55099 Mainz, Germany
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
| | - Yundong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
- College of Chemistry, Peking University, 100871 Beijing, P. R. China
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom, LE7 9HN
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, 97401 Eugene, Oregon, USA
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg, University of Mainz, 55099 Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Hanno J. Bolz
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| |
Collapse
|