1
|
Gabillard-Lefort C, Martinez CS, Gueguen N, Desquiret-Dumas V, Wery M, Legoff L, Guimier A, Rondeau S, Barcia G, Barnerias C, Cogne B, Besnard T, Lorino E, Douglas J, Bodamer O, Vetro A, Guerrini R, Balestrini S, Conti V, Siri L, Chevrollier A, Bris C, Colin E, Procaccio V, Prunier-Mirebeau D, Lenaers G, Khiati S, Nizon M, Baris OR. Bi-allelic variants in TM2D3 cause a severe syndromic neurodevelopmental disorder associated with endoplasmic reticulum and mitochondrial abnormalities. Am J Hum Genet 2025:S0002-9297(25)00184-3. [PMID: 40449487 DOI: 10.1016/j.ajhg.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 06/03/2025] Open
Abstract
We identified via exome sequencing bi-allelic variants in TM2D3 in four affected individuals from four unrelated families with overlapping clinical presentations, including microcephaly, severe global developmental delay with absent speech, autistic features, heart malformation, and dysmorphic facial features. TM2D3 encodes a transmembrane protein present in many tissues, with a higher abundance in the central nervous system, but little is known about its function and cell localization. Here, by using chemical and genetically encoded probes in SNB75 cells, we show that TM2D3 is an endoplasmic reticulum (ER) protein. Further analysis on SNB75 TM2D3-knockout cells as well as skin fibroblasts from affected individuals harboring the recurrent c.503G>A (p.Gly168Asp) allele revealed an impact of TM2D3 on ER-stress response, with dysregulated expression of ATF4, HSPA5, and DDIT3. Transmission electron microscopy highlighted ER swelling as well as unexpected secondary mitochondrial alterations including increased length, cristae width, and ER-mitochondria distance. To gain further insights into the pathomechanisms at play, we performed RNA sequencing from the fibroblasts of the three individuals harboring the p.Gly168Asp variant and four available parents and disclosed 21 differentially expressed genes, including genes coding for extracellular matrix components involved in the migration of neuronal precursors. Altogether, these clinical and experimental data show that bi-allelic TM2D3 variants underlie a severe syndromic neurodevelopmental disorder linked to exacerbated ER-stress sensitivity, secondary mitochondrial alterations, and altered extracellular matrix gene expression.
Collapse
Affiliation(s)
- Claudie Gabillard-Lefort
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France
| | - Caroline Silveira Martinez
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France
| | - Naïg Gueguen
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France; Departments of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
| | - Valérie Desquiret-Dumas
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France; Departments of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
| | - Méline Wery
- University of Angers, SFR ICAT, Angers, France
| | - Louis Legoff
- Department of Genetics, University Hospital of Angers, Angers, France
| | - Anne Guimier
- Genomic Medicine Service for Rare Diseases, Necker Enfants Malades Hospital, Paris, France
| | - Sophie Rondeau
- Genomic Medicine Service for Rare Diseases, Necker Enfants Malades Hospital, Paris, France
| | - Giulia Barcia
- Genomic Medicine Service for Rare Diseases, Necker Enfants Malades Hospital, Paris, France
| | | | - Benjamin Cogne
- University Hospital of Nantes, Genomic Medicine Service, University of Nantes, CNRS, INSERM, Institut du Thorax, Nantes, France
| | - Thomas Besnard
- University Hospital of Nantes, Genomic Medicine Service, University of Nantes, CNRS, INSERM, Institut du Thorax, Nantes, France
| | - Elsa Lorino
- Department of Pediatrics, University Hospital of Nantes, Nantes, France; SMR pédiatrique ESEAN APF France Handicap (Paediatric Rehabilitation Services), Nantes, France
| | - Jessica Douglas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Annalisa Vetro
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Simona Balestrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Valerio Conti
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Laura Siri
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Arnaud Chevrollier
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France
| | - Céline Bris
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France; Department of Genetics, University Hospital of Angers, Angers, France
| | - Estelle Colin
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France; Department of Genetics, University Hospital of Angers, Angers, France
| | - Vincent Procaccio
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France; Department of Genetics, University Hospital of Angers, Angers, France
| | - Delphine Prunier-Mirebeau
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France; Departments of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
| | - Guy Lenaers
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France; Department of Neurology, University Hospital of Angers, Angers, France
| | - Salim Khiati
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France
| | - Mathilde Nizon
- University Hospital of Nantes, Genomic Medicine Service, University of Nantes, CNRS, INSERM, Institut du Thorax, Nantes, France
| | - Olivier R Baris
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, University Hospital of Angers, Angers, France.
| |
Collapse
|
2
|
Yamada S, Mizukoshi T, Sato A, Sakakibara SI. Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review. Acta Histochem Cytochem 2024; 57:89-100. [PMID: 38988694 PMCID: PMC11231565 DOI: 10.1267/ahc.24-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/12/2024] Open
Abstract
Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the "purinosome." Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
3
|
McSweeney C, Chen M, Dong F, Sebastian A, Reynolds DJ, Mott J, Pei Z, Zou J, Shi Y, Mao Y. Transcriptomic Analyses of Brains of RBM8A Conditional Knockout Mice at Different Developmental Stages Reveal Conserved Signaling Pathways Contributing to Neurodevelopmental Diseases. Int J Mol Sci 2023; 24:4600. [PMID: 36902031 PMCID: PMC10003467 DOI: 10.3390/ijms24054600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
RNA-binding motif 8A (RBM8A) is a core component of the exon junction complex (EJC) that binds pre-mRNAs and regulates their splicing, transport, translation, and nonsense-mediated decay (NMD). Dysfunction in the core proteins has been linked to several detriments in brain development and neuropsychiatric diseases. To understand the functional role of Rbm8a in brain development, we have generated brain-specific Rbm8a knockout mice and used next-generation RNA-sequencing to identify differentially expressed genes (DEGs) in mice with heterozygous, conditional knockout (cKO) of Rbm8a in the brain at postnatal day 17 (P17) and at embryonic day 12. Additionally, we analyzed enriched gene clusters and signaling pathways within the DEGs. At the P17 time point, between the control and cKO mice, about 251 significant DEGs were identified. At E12, only 25 DEGs were identified in the hindbrain samples. Bioinformatics analyses have revealed many signaling pathways related to the central nervous system (CNS). When E12 and P17 results were compared, three DEGs, Spp1, Gpnmb, and Top2a, appeared to peak at different developmental time points in the Rbm8a cKO mice. Enrichment analyses suggested altered activity in pathways affecting cellular proliferation, differentiation, and survival. The results support the hypothesis that loss of Rbm8a causes decreased cellular proliferation, increased apoptosis, and early differentiation of neuronal subtypes, which may lead ultimately to an altered neuronal subtype composition in the brain.
Collapse
Affiliation(s)
- Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Miranda Chen
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Derrick James Reynolds
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jizhong Zou
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Rockville, MD 20892, USA
| | - Yongsheng Shi
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Inka2 expression in smooth muscle cells and its involvement in cell migration. Biochem Biophys Res Commun 2023; 643:55-60. [PMID: 36586159 DOI: 10.1016/j.bbrc.2022.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The cell motility of smooth muscle cells (SMCs) is essential for vascular and internal organ development and tissue regeneration in response to damage. Cell migration requires dynamic changes in the actin-cytoskeleton via the p-21 activated kinase (Pak)-Cofilin signaling cascade, which is the central axis of the actin filaments. We previously identified that the Inka2 gene was preferentially expressed in the central nervous system (CNS) and revealed that Inka2 directly binds Pak4 to suppress its kinase activity, thereby regulating actin de-polymerization in dendritic spine formation of the forebrain neurons. However, its physiological significance outside the CNS remains unclear. Here we determined the Inka2 expression profile in various organs using in situ hybridization analysis and lacZ staining on Inka2flox/+ mice. Robust Inka2 expression was consistently detected in the SMCs of many peripheral organs, including the arteries, esophagus, stomach, intestine, and bladder. The scratch assay was used on primary cultured SMCs and revealed that Inka2-/- SMC exhibits accelerated cell migration ability without a change in the cell proliferation rate. Inka2-/- SMCs displayed Cofilin activation/phosphorylation, a downstream molecule of Pak4 signal cascade. These results suggest that Inka2 regulates SMC motility through modulating actin reorganization as the endogenous inhibitor of Pak4.
Collapse
|
5
|
Yamada S, Furukawa R, Sakakibara SI. Identification and expression profile of novel STAND gene Nwd2 in the mouse central nervous system. Gene Expr Patterns 2022; 46:119284. [PMID: 36341976 DOI: 10.1016/j.gep.2022.119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
Abstract
In the central nervous system (CNS), neurons need synaptic neurotransmitter release and cellular response for various cellular stress or environmental stimuli. To achieve these highly orchestrated cellular processes, neurons should drive the molecular mechanisms that govern and integrate complex signaling pathways. The signal transduction ATPases with numerous domains (STAND) family of proteins has been shown to play essential roles in diverse signal transduction mechanisms, including apoptosis and innate immunity. However, a comprehensive understanding of STAND genes remains lacking. Previously, we identified the NACHT and WD repeat domain-containing protein 1 (NWD1), a member of STAND family, in the regulation of the assembly of a giant multi-enzyme complex that enables efficient de novo purine biosynthesis during brain development. Here we identified the mouse Nwd2 gene, which is a paralog of Nwd1. A molecular phylogenetic analysis suggested that Nwd1 emerged during the early evolution of the animal kingdom, and that Nwd2 diverged in the process of Nwd1 duplication. RT-PCR and in situ hybridization analyses revealed the unique expression profile of Nwd2 in the developing and adult CNS. Unlike Nwd1, Nwd2 expression was primarily confined to neurons in the medial habenular nucleus, an essential modulating center for diverse psychological states, such as fear, anxiety, and drug addiction. In the adult brain, Nwd2 expression, albeit at a lower level, was also observed in some neuronal populations in the piriform cortex, hippocampus, and substantia nigra pars compacta. NWD2 might play a unique role in the signal transduction required for specific neuronal circuits, especially for cholinergic neurons in the habenula.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan.
| | - Ryutaro Furukawa
- Laboratory of Life Science for Extremophiles, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
6
|
Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet 2022; 18:e1010438. [PMID: 36301793 PMCID: PMC9612522 DOI: 10.1371/journal.pgen.1010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
The actin filament is a fundamental part of the cytoskeleton defining cell morphology and regulating various physiological processes, including filopodia formation and dendritic spinogenesis of neurons. Serine/threonine-protein kinase Pak4, an essential effector, links Rho GTPases to control actin polymerization. Previously, we identified the Inka2 gene, a novel mammalian protein exhibiting sequence similarity to Inka1, which serves as a possible inhibitor for Pak4. Although Inka2 is dominantly expressed in the nervous system and involved in focal-adhesion dynamics, its molecular role remains unclear. Here, we found that Inka2-iBox directly binds to Pak4 catalytic domain to suppress actin polymerization. Inka2 promoted actin depolymerization and inhibited the formation of cellular protrusion caused by Pak4 activation. We further generated the conditional knockout mice of the Inka2 gene. The beta-galactosidase reporter indicated the preferential Inka2 expression in the dorsal forebrain neurons. Cortical pyramidal neurons of Inka2-/- mice exhibited decreased density and aberrant morphology of dendritic spines with marked activation/phosphorylation of downstream molecules of Pak4 signal cascade, including LIMK and Cofilin. These results uncovered the unexpected function of endogenous Pak4 inhibitor in neurons. Unlike Inka1, Inka2 is a critical mediator for actin reorganization required for dendritic spine development. Actin filaments are an essential part of the cytoskeleton defining cell morphology and regulating various cellular processes, such as cell migration and synapse formation in the brain. Actin polymerization is controlled by the kinase activity of the Pak4 signaling cascade, including LIMK and Cofilin. Previously, we identified the Inka2 gene, which is strongly expressed in the mammalian central nervous system and a similar sequence as Inka1. Inka1 was reported to serve as a Pak4 inhibitor in cancer cell lines; however, the physiological function of Inka2 is unclear. In this study, we found that (i) Inka2 overexpression inhibits the formation of cell-protrusion caused by Pak4 activation; (ii) Inka2 directly binds to the catalytic domain of Pak4 to inhibit intracellular actin polymerization; (iii) Inka2 is specifically expressed in neurons in the forebrain region, including the cerebral cortex and hippocampus that are known to be essential for brain plasticity, such as learning and memory; and (iv) cortical neurons of Inka2-deficient mice showed decreased synapse formation and abnormal spine morphology, probably due to the marked phosphorylation of LIMK and Cofilin. These results indicate that Inka2 is an endogenous Pak4 inhibitor in neurons required for normal synapse formation through the modulation of actin reorganization.
Collapse
|
7
|
Jeon H, Jin S, Choe CP. inka1b expression in the head mesoderm is dispensable for facial cartilage development. Gene Expr Patterns 2022; 45:119262. [PMID: 35811016 DOI: 10.1016/j.gep.2022.119262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Inka box actin regulator 1 (Inka1) is a novel protein identified in Xenopus and is found in vertebrates. While Inka1 is required for facial skeletal development in Xenopus and zebrafish, it is dispensable in mice despite its conserved expression in the cranial neural crest, indicating that Inka1 function in facial skeletal development is not conserved among vertebrates. Zebrafish bears two paralogs of inka1 (inka1a and inka1b) in the genome, with the biological roles of inka1b barely known. Here, we analyzed the expression and function of inka1b during facial skeletal development in zebrafish. inka1b was expressed sequentially in the head mesoderm adjacent to the pharyngeal pouches essential for facial skeletal development at the stage of arch segmentation. However, a loss-of-function mutation in inka1b displayed normal head development, including the pouches and facial cartilages. The normal head of inka1b mutant fish was unlikely a result of the genetic redundancy of inka1b with inka1a, given the distinct expression of inka1a and inka1b in the cranial neural crest and head mesoderm, respectively, during craniofacial development. Our findings suggest that the inka1b expression in the head mesoderm might not be essential for head development in zebrafish.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
8
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Ohayon D, Aguirrebengoa M, Escalas N, Jungas T, Soula C. Transcriptome profiling of the Olig2-expressing astrocyte subtype reveals their unique molecular signature. iScience 2021; 24:102806. [PMID: 34296073 PMCID: PMC8281609 DOI: 10.1016/j.isci.2021.102806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Astrocytes are recognized to be a heterogeneous population of cells that differ morphologically, functionally, and molecularly. Whether this heterogeneity results from generation of distinct astrocyte cell lineages, each functionally specialized to perform specific tasks, remains an open question. In this study, we used RNA sequencing analysis to determine the global transcriptome profile of the Olig2-expressing astrocyte subtype (Olig2-AS), a specific spinal astrocyte subtype that segregates early during development from Olig2 progenitors and differs from other spinal astrocytes by the expression of Olig2. We identified 245 differentially expressed genes. Among them, 135 exhibit higher levels of expression when compared with other populations of spinal astrocytes, indicating that these genes can serve as a "unique" functional signature of Olig2-AS. Among them, we identify two genes, inka2 and kcnip3, as specific molecular markers of the Olig2-AS in the P7 spinal cord. Our work thus reveals that Olig2 progenitors produce a unique spinal astrocyte subtype.
Collapse
Affiliation(s)
- David Ohayon
- Molecular, Cellular and Developmental Biology department (MCD) UMR 5077 CNRS, Centre de Biologie Intégrative (CBI), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- BigA Core Facility, Centre de Biologie Intégrative, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Nathalie Escalas
- Molecular, Cellular and Developmental Biology department (MCD) UMR 5077 CNRS, Centre de Biologie Intégrative (CBI), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology department (MCD) UMR 5077 CNRS, Centre de Biologie Intégrative (CBI), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Cathy Soula
- Molecular, Cellular and Developmental Biology department (MCD) UMR 5077 CNRS, Centre de Biologie Intégrative (CBI), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
10
|
Chen GL, Li R, Chen XX, Wang J, Cao S, Song R, Zhao MC, Li LM, Hannemmann N, Schett G, Qian C, Bozec A. Fra-2/AP-1 regulates melanoma cell metastasis by downregulating Fam212b. Cell Death Differ 2020; 28:1364-1378. [PMID: 33188281 DOI: 10.1038/s41418-020-00660-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Metastatic melanoma remains a challenging disease. Understanding the molecular mechanisms how melanoma becomes metastatic is therefore of interest. Herein we show that downregulation of the AP-1 transcription factor member Fra-2 in melanoma cells is associated with an aggressive melanoma phenotype in vitro and in vivo. In vitro, Fra-2 knockdown in melanoma cells promoted cell migration and invasion associated with increased Snail-1, Twist-1/2, and matrix metalloproteinase-2 (MMP-2) expression. In vivo, Fra-2 knockdown in a melanoma cell line led to increased metastasis into the lungs and liver. The increased metastatic potential of Fra-2 knockdown melanoma cells was likely due to an accelerated cell cycle transition and increased tissue angiogenesis. Using Fra-2 knockdown cell lines microarray analysis, we identified the protein Fam212b (family with sequence similarity 212 member B) as a downstream target of Fra-2. By additional knockdown of Fam212b in Fra-2 mutant cells, we mitigated the cell migration, invasion, and cell cycle transition phenotype induced by Fra-2 knockdown. Furthermore, Fam212b overexpression enhanced β-catenin pathway. Finally, Fam212b expression is correlated with increased melanoma metastasis and poor clinical outcomes in human patients. In summary, these findings reveal the Fra-2-Fam212b axis as a new pathway of melanoma metastasis, which can be in the future used as potential marker of the metastatic properties of melanoma.
Collapse
Affiliation(s)
- Guang-Liang Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiao-Xiang Chen
- Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shan Cao
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Rui Song
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ming-Chun Zhao
- Department of Pathology, Guilin People's Hospital, Guilin, Guangxi, China
| | - Li-Ming Li
- Department of Pediatric Surgery, Guigang People's Hospital, Guigang, Guangxi, China
| | - Nicole Hannemmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cheng Qian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
11
|
Akiyama H, Iwasaki Y, Yamada S, Kamiguchi H, Sakakibara SI. Control of cell migration by the novel protein phosphatase-2A interacting protein inka2. Cell Tissue Res 2020; 380:527-537. [DOI: 10.1007/s00441-020-03169-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
12
|
Liu J, Zhu L, Wang J, Qiu L, Chen Y, Davis RE, Cheng G. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism. PLoS Pathog 2019; 15:e1007817. [PMID: 31163079 PMCID: PMC6548406 DOI: 10.1371/journal.ppat.1007817] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Schistosome infection persists for decades. Parasites are in close contact with host peripheral blood immune cells, yet little is known about the regulatory interactions between parasites and these immune cells. Here, we report that extracellular vesicles (EVs) released from Schistosoma japonicum are taken up primarily by macrophages and other host peripheral blood immune cells and their miRNA cargo transferred into recipient cells. Uptake of S. japonicum EV miR-125b and bantam miRNAs into host cells increased macrophage proliferation and TNF-α production by regulating the corresponding targets including Pros1, Fam212b, and Clmp. Mice infected with S. japonicum exhibit an increased population of monocytes and elevated levels of TNF-α. Reduction of host monocytes and TNF-α level in S. japonicum infected mice led to a significant reduction in worm and egg burden and pathology. Overall, we demonstrate that S. japonicum EV miRNAs can regulate host macrophages illustrating parasite modulation of the host immune response to facilitate parasite survival. Our findings provide valuable insights into the schistosome-host interaction which may help to develop novel intervention strategies against schistosomiasis. Schistosomes that cause schistosomiasis infection persist for decades despite a host immune response. Therefore, elucidating the mechanism of schistosome survival will not only contribute to the understanding of host-parasite interaction but also lead to the development of novel strategies against schistosomiasis. Extracellular vesicles (EVs) and their miRNA cargo have been shown to be mediators of intercellular communication involved in the regulation of many biological processes. Here, we demonstrated that EVs released from Schistosoma japonicum (SjEVs) are taken up primarily by macrophages and other host peripheral blood immune cells and their miRNA cargo transferred into recipient cells. Uptake of S. japonicum EV miR-125b and bantam miRNAs into host cells increased macrophage proliferation and TNF-α production that contributes to parasite survival. Our findings reveal key roles of SjEV miRNAs for facilitating parasitism in schistosomes.
Collapse
Affiliation(s)
- Juntao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai, China
| | - Lihui Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai, China
| | - Jianbin Wang
- Departments of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai, China
| | - Richard E. Davis
- Departments of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai, China
- * E-mail: ,
| |
Collapse
|
13
|
Liu YY, Tanikawa C, Ueda K, Matsuda K. INKA2, a novel p53 target that interacts with the serine/threonine kinase PAK4. Int J Oncol 2019; 54:1907-1920. [PMID: 31081062 PMCID: PMC6521941 DOI: 10.3892/ijo.2019.4786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
The p53 protein is a tumour suppressor and transcription factor that regulates the expression of target genes involved in numerous stress responses systems. In this study, we designed a screening strategy using DNA damage-induced mouse and human transcriptome data to identify novel downstream targets of p53. Our method selected genes with an induced expression in multiple organs of X-ray-irradiated p53 wild-type mice. The expression of inka box actin regulator 2 gene, known as Inka2, was upregulated in 12 organs when p53 expression was induced. Similarly, INKA2 was induced in a p53-dependent manner at both the mRNA and protein level in human cells treated with adriamycin. Reporter assays confirmed that p53 directly regulated INKA2 through an intronic binding site. The overexpression of INKA2 produced a slight decrease in cancer cell growth in the colony formation assay. Moreover, the analysis of The Cancer Genome Atlas (TCGA) data revealed a decreased INKA2 expression in tumour samples carrying p53 mutations compared with p53 wild-type samples. In addition, significantly higher levels of DNA methylation were observed in the INKA2 promoter in tumour samples, concordant with the reduced INKA2 expression in tumour tissues. These results demonstrate the potential of INKA2 as a cancer cell growth inhibitor. Furthermore, INKA2 protein interacts with the serine/threonine-protein kinase, p21 (RAC1) activated kinase (PAK)4, which phosphorylates β-catenin to prevent ubiquitin-proteasomal degradation. As β-catenin was downregulated in a stable INKA2-expressing cell line, the findings of this study suggest that INKA2 is a novel, direct downstream target of p53 that potentially decreases cell growth by inhibiting the PAK4-β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Yu Liu
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo 108‑8639, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo 108‑8639, Tokyo, Japan
| | - Koji Ueda
- Project for Realization of Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo 108‑8639, Tokyo, Japan
| |
Collapse
|
14
|
Yamada S, Sakakibara SI. Expression profile of the STAND protein Nwd1 in the developing and mature mouse central nervous system. J Comp Neurol 2018; 526:2099-2114. [PMID: 30004576 DOI: 10.1002/cne.24495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/02/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
The orchestrated events required during brain development, as well as the maintenance of adult neuronal plasticity, highly depend on the accurate responses of neuronal cells to various cellular stress or environmental stimuli. Recent studies have defined a previously unrecognized, broad class of multidomain proteins, designated as signal transduction ATPases with numerous domains (STAND), which comprises a large number of proteins, including the apoptotic peptidase activating factor 1 (Apaf1) and nucleotide-binding oligomerization domain-like receptors (NLRs), central players in cell death and innate immune responses, respectively. Although the involvement of STANDs in the central nervous system (CNS) has been postulated in terms of neuronal development and function, it remains largely unclear. Here, we identified Nwd1 (NACHT and WD repeat domain-containing protein 1), as a novel STAND protein, expressed in neural stem/progenitor cells (NSPCs). Structurally, Nwd1 was most analogous to the apoptosis regulator Apaf1, also involved in mitosis and axonal outgrowth regulation in the CNS. Using a specific antibody, we show that, during the embryonic and postnatal period, Nwd1 is expressed in nestin-positive NSPCs in vivo and in vitro, while postnatally it is found in terminally differentiated neurons and blood vessels. At the subcellular level, we demonstrate that Nwd1 is preferentially located in the cytosolic compartment of cultured NSPCs, partially overlapping with cytochrome c. These observations imply that Nwd1 might be involved in the neuronal lineage as a new STAND gene, including having a pro-apoptotic or nonapoptotic role, similar to Apaf1.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Waseda University, Saitama, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|