1
|
Girich A, Sadriev K, Frolova L, Dolmatov I. Role of smoothened and sfrp genes in Eupentacta fraudatrix regeneration. Wound Repair Regen 2023; 31:464-474. [PMID: 37210604 DOI: 10.1111/wrr.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 05/22/2023]
Abstract
The secreted frizzled-related proteins (sfrp) and smoothened (smo) genes and their possible role in the regeneration of internal organs in the holothurian Eupentacta fraudatrix were studied. In this species, two sfrp genes were identified: sfrp1/2/5, sfrp3/4 and one smo gene. Their expression was analysed during regeneration of the aquapharyngeal bulb (AB) and intestine, and these genes were knock down by RNA interference. It has been shown that the expression of these genes is extremely important for the formation of AB. In all animals subjected to knockdown, at 7 days after evisceration, a full-sized AB rudiment was not formed. As a result of sfrp1/2/5 knockdown, the process of extracellular matrix remodelling in AB is interrupted, that leading to clusters of dense connective tissue formation, which slows down cell migration. When sfrp3/4 is knockdown, the connective tissue of AB anlage is completely disrupted and its symmetry is broken. The effect of smo knockdown was expressed in a significant impairment of AB regeneration, when connections between ambulacras were not formed after evisceration. However, despite severe disturbances in AB regeneration, a normal-sized gut anlage developed in all cases, which suggests that the regeneration of the digestive tube and AB occur independently of each other.
Collapse
Affiliation(s)
- Alexander Girich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Konstantin Sadriev
- Institute of the World Ocean, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Lidia Frolova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Tominaga H, Nishitsuji K, Satoh N. A single-cell RNA-seq analysis of early larval cell-types of the starfish, Patiria pectinifera: Insights into evolution of the chordate body plan. Dev Biol 2023; 496:52-62. [PMID: 36717049 DOI: 10.1016/j.ydbio.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Ambulacrarians (echinoderms and hemichordates) are a sister group to chordates; thus, their larval cell-types may provide clues about evolution of chordate body plans. Although most genic information accumulated to date pertains to sea urchin embryogenesis, starfish embryogenesis represents a more ancestral mode than that of sea urchins. We performed single-cell RNA-seq analysis of cell-types from gastrulae and bipinnarial larvae of the starfish, Patiria pectinifera, and categorized them into 22 clusters, each of which is composed of cells with specific, shared profiles of development-relevant gene expression. Oral and aboral ectoderm, apical plate, hindgut or archenteron, midgut or intestine, pharynx, endomesoderm, stomodeum, and mesenchyme of the gastrulae, and neurons, ciliary bands, enterocoel and muscle of larvae were characterized by expression profiles of at least two relevant transcription factor genes and signaling molecular genes. Expression of Hox2, Hox7, Hox9/10, and Hox11/13b was detected in cells of clusters that form the larval enterocoel. By comparing homologous gene expression profiles in chordate embryos, we discuss and propose how the chordate body plan evolved from a deuterostome ancestor, from which the echinoderm body plan also evolved.
Collapse
Affiliation(s)
- Hitoshi Tominaga
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
3
|
Robert N, Hammami F, Lhomond G, Dru P, Lepage T, Schubert M, Croce JC. A wnt2 ortholog in the sea urchin Paracentrotus lividus. Genesis 2019; 57:e23331. [PMID: 31479176 DOI: 10.1002/dvg.23331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
Members of the wnt gene family encode secreted glycoproteins that mediate critical intercellular communications in metazoans. Large-scale genome and transcriptome analyses have shown that this family is composed of 13 distinct subfamilies. These analyses have further established that the number of wnt genes per subfamily varies significantly between metazoan phyla, highlighting that gene duplication and gene loss events have shaped the complements of wnt genes during evolution. In sea urchins, for example, previous work reported the absence of representatives of both the WNT2 and WNT11 subfamilies in two different species, Paracentrotus lividus and Strongylocentrotus purpuratus. Recently, however, we identified a gene encoding a WNT2 ortholog in P. lividus and, based on that finding, we also reanalyzed the genome of S. purpuratus. Yet, we found no evidence of a bona fide wnt2 gene in S. purpuratus. Furthermore, we established that the P. lividus wnt2 gene is selectively expressed in vegetal tissues during embryogenesis, in a pattern that is similar, although not identical, to that of other P. lividus wnt genes. Taken together, this study amends previous work on the P. lividus wnt complement and reveals an unexpected variation in the number of wnt genes between closely related sea urchin species.
Collapse
Affiliation(s)
- Nicolas Robert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | | | - Guy Lhomond
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Philippe Dru
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), I4 service, Villefranche-sur-Mer, France
| | | | - Michael Schubert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| |
Collapse
|
4
|
Hogvall M, Vellutini BC, Martín-Durán JM, Hejnol A, Budd GE, Janssen R. Embryonic expression of priapulid Wnt genes. Dev Genes Evol 2019; 229:125-135. [PMID: 31273439 PMCID: PMC6647475 DOI: 10.1007/s00427-019-00636-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/02/2019] [Indexed: 01/12/2023]
Abstract
Posterior elongation of the developing embryo is a common feature of animal development. One group of genes that is involved in posterior elongation is represented by the Wnt genes, secreted glycoprotein ligands that signal to specific receptors on neighbouring cells and thereby establish cell-to-cell communication. In segmented animals such as annelids and arthropods, Wnt signalling is also likely involved in segment border formation and regionalisation of the segments. Priapulids represent unsegmented worms that are distantly related to arthropods. Despite their interesting phylogenetic position and their importance for the understanding of ecdysozoan evolution, priapulids still represent a highly underinvestigated group of animals. Here, we study the embryonic expression patterns of the complete sets of Wnt genes in the priapulids Priapulus caudatus and Halicryptus spinulosus. We find that both priapulids possess a complete set of 12 Wnt genes. At least in Priapulus, most of these genes are expressed in and around the posterior-located blastopore and thus likely play a role in posterior elongation. Together with previous work on the expression of other genetic factors such as caudal and even-skipped, this suggests that posterior elongation in priapulids is under control of the same (or very similar) conserved gene regulatory network as in arthropods.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.
| |
Collapse
|
5
|
陈 可, 梁 汉, 彭 杰, 郑 燕. [Expression of secreted frizzled-related protein 4 in DNA mismatch repair-deficient and mismatch repair-proficient colorectal cancers]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1300-1305. [PMID: 30514676 PMCID: PMC6744115 DOI: 10.12122/j.issn.1673-4254.2018.11.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the expressions of secreted frizzled-related protein 4 (SFRP4) in stage Ⅱ DNA mismatch repair-deficient (dMMR) and mismatch repair- proficient (pMMR) colorectal cancers and explore their clinical significance. METHODS We collected fresh stage Ⅱ colon cancer tissues with different MMR status detected by immunohistochemistry (IHC). The differentially expressed mRNAs between dMMR and pMMR tumors were identified by Affymetrix Human oeLncRNA gene chip, and the expression of SFRP4 in these cancer tissues and in colorectal cancer cell lines were detected using Western blotting and real- time quantitative PCR. The apoptosis rates of HCT116 cells with and without siRNA- mediated transient SFRP4 knockdown were determined using flow cytometry. We further investigated the expression pattern of Ki-67 and its correlation with SFRP4 expression. RESULTS Compared with pMMR colon cancer tissues or cells, both dMMR colon cancer tissues (P=0.014) and cells (P=0.0079) showed significantly increased expression of SFRP4, which was in negative correlation with Ki-67 (P=0.041). In HCT116 cells, transient SFRP4 knockdown resulted in decreased cell apoptosis, including both early apoptosis (P=0.003) and late apoptosis (P=0.024). CONCLUSIONS Up-regulation of SFRP4 in dMMR stage Ⅱ colon cancer promotes apoptosis and inhibits proliferation of the cancer cells, and may improve the prognosis of dMMR colon cancer.
Collapse
Affiliation(s)
- 可绪 陈
- 中山市人民医院肿瘤分院,广东 中山 528400Center of Oncology, Zhongshan People's Hospital, Zhongshan 528400, China
- 南方医科大学珠江医院肿瘤中心,广东 广州 510282Center of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 汉霖 梁
- 中山市人民医院肿瘤分院,广东 中山 528400Center of Oncology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - 杰文 彭
- 中山市人民医院肿瘤分院,广东 中山 528400Center of Oncology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - 燕芳 郑
- 南方医科大学珠江医院肿瘤中心,广东 广州 510282Center of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
6
|
Saito S, Hamanaka G, Kawai N, Furukawa R, Gojobori J, Tominaga M, Kaneko H, Satta Y. Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae. Sci Rep 2017; 7:2173. [PMID: 28526851 PMCID: PMC5438368 DOI: 10.1038/s41598-017-02171-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/12/2017] [Indexed: 11/30/2022] Open
Abstract
The vast majority of marine invertebrates spend their larval period as pelagic plankton and are exposed to various environmental cues. Here we investigated the thermotaxis behaviors of the bipinnaria larvae of the starfish, Patiria pectinifera, in association with TRPA ion channels that serve as thermal receptors in various animal species. Using a newly developed thermotaxis assay system, we observed that P. pectinifera larvae displayed positive thermotaxis toward high temperatures, including toward temperatures high enough to cause death. In parallel, we identified two TRPA genes, termed PpTRPA1 and PpTRPA basal, from this species. We examined the phylogenetic position, spatial expression, and channel properties of each PpTRPA. Our results revealed the following: (1) The two genes diverged early in animal evolution; (2) PpTRPA1 and PpTRPA basal are expressed in the ciliary band and posterior digestive tract of the larval body, respectively; and (3) PpTRPA1 is activated by heat stimulation as well as by known TRPA1 agonists. Moreover, knockdown and rescue experiments demonstrated that PpTRPA1 is involved in positive thermotaxis in P. pectinifera larvae. This is the first report to reveal that TRPA1 channels regulate the behavioral response of a marine invertebrate to temperature changes during its planktonic larval period.
Collapse
Affiliation(s)
- Shigeru Saito
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
| | - Gen Hamanaka
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kouyatsu, Tateyama, Chiba, 294-0301, Japan
| | - Narudo Kawai
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa, 223-8521, Japan
| | - Ryohei Furukawa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University Disaster Reconstruction Center, Nishitokuda, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
| | - Hiroyuki Kaneko
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa, 223-8521, Japan.
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|