1
|
Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. Comparative transcriptomics analysis reveals defense mechanisms of Manihot esculenta Crantz against Sri Lanka Cassava MosaicVirus. BMC Genomics 2024; 25:436. [PMID: 38698332 PMCID: PMC11067156 DOI: 10.1186/s12864-024-10315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Pumipat Tongyoo
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Xie SS, Zhang YZ, Peng L, Yu DT, Zhu G, Zhao Q, Wang CH, Xie Q, Duan CG. JMJ28 guides sequence-specific targeting of ATX1/2-containing COMPASS-like complex in Arabidopsis. Cell Rep 2023; 42:112163. [PMID: 36827182 DOI: 10.1016/j.celrep.2023.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive investigations in mammals and yeasts, the importance and specificity of COMPASS-like complex, which catalyzes histone 3 lysine 4 methylation (H3K4me), are not fully understood in plants. Here, we report that JMJ28, a Jumonji C domain-containing protein in Arabidopsis, recognizes specific DNA motifs through a plant-specific WRC domain and acts as an interacting factor to guide the chromatin targeting of ATX1/2-containing COMPASS-like complex. JMJ28 associates with COMPASS-like complex in vivo via direct interaction with RBL. The DNA-binding activity of JMJ28 is essential for both the targeting specificity of ATX1/2-COMPASS and the deposition of H3K4me at specific loci but exhibit functional redundancy with alternative COMPASS-like complexes at other loci. Finally, we demonstrate that JMJ28 is a negative regulator of plant immunity. In summary, our findings reveal a plant-specific recruitment mechanism of COMPASS-like complex. These findings help to gain deeper insights into the regulatory mechanism of COMPASS-like complex in plants.
Collapse
Affiliation(s)
- Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ding-Tian Yu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhen Zhao
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Chun-Han Wang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Evolutionary History and Functional Diversification of the JmjC Domain-Containing Histone Demethylase Gene Family in Plants. PLANTS 2022; 11:plants11081041. [PMID: 35448769 PMCID: PMC9029850 DOI: 10.3390/plants11081041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022]
Abstract
Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were identified from 21 different plant species. The evolutionary analysis results showed that the JmjC gene was detected in each species, that is, the gene has already appeared in algae. The phylogenetic analysis showed that the KDM3/JHDM2 subfamily genes may have appeared when plants transitioned from water to land, but were lost in lycophytes (Selaginella moellendorffii). During the evolutionary process, some subfamily genes may have been lost in individual species. According to the analysis of the conserved domains, all of the plant JmjC genes contained a typical JmjC domain, which was highly conserved during plant evolution. The analysis of cis-acting elements showed that the promoter region of the JmjC gene was rich in phytohormones and biotic and abiotic stress-related elements. The transcriptome data analysis and protein interaction analyses showed that JmjC genes play an important role in plant growth and development. The results clarified the evolutionary history of JmjC family genes in plants and lay the foundation for the analysis of the biological functions of JmjC family genes.
Collapse
|
4
|
Canton M, Farinati S, Forestan C, Joseph J, Bonghi C, Varotto S. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in peach reproductive tissues. PLANT METHODS 2022; 18:43. [PMID: 35361223 PMCID: PMC8973749 DOI: 10.1186/s13007-022-00876-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Perennial fruit trees display a growth behaviour characterized by annual cycling between growth and dormancy, with complex physiological features. Rosaceae fruit trees represent excellent models for studying not only the fruit growth/patterning but also the progression of the reproductive cycle depending upon the impact of climate conditions. Additionally, current developments in high-throughput technologies have impacted Rosaceae tree research while investigating genome structure and function as well as (epi)genetic mechanisms involved in important developmental and environmental response processes during fruit tree growth. Among epigenetic mechanisms, chromatin remodelling mediated by histone modifications and other chromatin-related processes play a crucial role in gene modulation, controlling gene expression. Chromatin immunoprecipitation is an effective technique to investigate chromatin dynamics in plants. This technique is generally applied for studies on chromatin states and enrichment of post-transcriptional modifications (PTMs) in histone proteins. RESULTS Peach is considered a model organism among climacteric fruits in the Rosaceae family for studies on bud formation, dormancy, and organ differentiation. In our work, we have primarily established specific protocols for chromatin extraction and immunoprecipitation in reproductive tissues of peach (Prunus persica). Subsequently, we focused our investigations on the role of two chromatin marks, namely the trimethylation of histone H3 at lysine in position 4 (H3K4me3) and trimethylation of histone H3 at lysine 27 (H3K27me3) in modulating specific gene expression. Bud dormancy and fruit growth were investigated in a nectarine genotype called Fantasia as our model system. CONCLUSIONS We present general strategies to optimize ChIP protocols for buds and mesocarp tissues of peach and analyze the correlation between gene expression and chromatin mark enrichment/depletion. The procedures proposed may be useful to evaluate any involvement of histone modifications in the regulation of gene expression during bud dormancy progression and core ripening in fruits.
Collapse
Affiliation(s)
- Monica Canton
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Justin Joseph
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| |
Collapse
|
5
|
Zhang Y, Chen M, Zhou S, Lou Y, Lu J. Silencing an E3 Ubiquitin Ligase Gene OsJMJ715 Enhances the Resistance of Rice to a Piercing-Sucking Herbivore by Activating ABA and JA Signaling Pathways. Int J Mol Sci 2021; 22:13020. [PMID: 34884830 PMCID: PMC8657654 DOI: 10.3390/ijms222313020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The RING-type E3 ubiquitin ligases play an important role in plant growth, development, and defense responses to abiotic stresses and pathogens. However, their roles in the resistance of plants to herbivorous insects remain largely unknown. In this study, we isolated the rice gene OsJMJ715, which encodes a RING-domain containing protein, and investigated its role in rice resistance to brown planthopper (BPH, Nilaparvata lugens). OsJMJ715 is a nucleus-localized E3 ligase whose mRNA levels were upregulated by the infestation of gravid BPH females, mechanical wounding, and treatment with JA or ABA. Silencing OsJMJ715 enhanced BPH-elicited levels of ABA, JA, and JA-Ile as well as the amount of callose deposition in plants, which in turn increased the resistance of rice to BPH by reducing the feeding of BPH and the hatching rate of BPH eggs. These findings suggest that OsJMJ715 negative regulates the BPH-induced biosynthesis of ABA, JA, and JA-Ile and that BPH benefits by enhancing the expression of OsJMJ715.
Collapse
Affiliation(s)
- Yuebai Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuxing Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Shang JY, Lu YJ, Cai XW, Su YN, Feng C, Li L, Chen S, He XJ. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. THE PLANT CELL 2021; 33:3250-3271. [PMID: 34270751 PMCID: PMC8505878 DOI: 10.1093/plcell/koab187] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/11/2021] [Indexed: 05/26/2023]
Abstract
In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.
Collapse
Affiliation(s)
| | | | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
7
|
Roy NS, Ban YW, Yoo H, Ramekar RV, Cheong EJ, Park NI, Na JK, Park KC, Choi IY. Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean). Genomics Inform 2021; 19:e19. [PMID: 34261303 PMCID: PMC8261272 DOI: 10.5808/gi.21024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.
Collapse
Affiliation(s)
- Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Wook Ban
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Hana Yoo
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Rahul Vasudeo Ramekar
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Eun Ju Cheong
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Jong Kuk Na
- Department of Controlled Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
8
|
Wang K, Zhang M, Wang C, Ning X. [ARTICLE WITHDRAWN] Long Noncoding RNA LINC01296 Harbors miR-21a to Regulate Colon Carcinoma Proliferation and Invasion. Oncol Res 2019; 27:541-549. [PMID: 29673421 PMCID: PMC7848363 DOI: 10.3727/096504018x15234931503876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHERS IN NOVEMBER 2020.
Collapse
Affiliation(s)
- Kecheng Wang
- *Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| | - Meng Zhang
- †Department of Medical Ultrasonography, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| | - Cong Wang
- †Department of Medical Ultrasonography, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| | - Xiaofei Ning
- *Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical College, Jining, Shandong, P.R. China
| |
Collapse
|
9
|
Cerruti E, Comino C, Acquadro A, Marconi G, Repetto AM, Pisanu AB, Pilia R, Albertini E, Portis E. Analysis of DNA Methylation Patterns Associated with In Vitro Propagated Globe Artichoke Plants Using an EpiRADseq-Based Approach. Genes (Basel) 2019; 10:E263. [PMID: 30939865 PMCID: PMC6523903 DOI: 10.3390/genes10040263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/16/2023] Open
Abstract
Globe artichoke represents one of the main horticultural species of the Mediterranean basin, and 'Spinoso sardo' is the most widespread and economically relevant varietal type in Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type 'Spinoso sardo' plants. This phenomenon cannot be foreseen and is reversible through generations, suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked to photosynthesis, regulation of flower development, and regulation of reproductive processes, coherently with the observed phenotype. Differences in the methylation status of some candidate genes were integrated with transcriptional analysis to test whether these two regulation levels might interplay in the emergence and spread of the 'Spinoso sardo' non-conventional phenotype.
Collapse
Affiliation(s)
- Elisa Cerruti
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Cinzia Comino
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Gianpiero Marconi
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Anna Maria Repetto
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Anna Barbara Pisanu
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Roberto Pilia
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Emidio Albertini
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| |
Collapse
|