1
|
Wang Q, Ai Y, Wang C, Liu Y, Zhong H, Yan W, He Y, Deng Z, Zou J, Feng H. PKACα negatively regulates TAK1/IRF7 signaling in black carp Mylopharyngodon piceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104306. [PMID: 34736993 DOI: 10.1016/j.dci.2021.104306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Protein Kinase A catalytic subunit α (PKACα), plays an important role in the PKA and NF-κB signaling pathway in mammals. However, the function of PKACα in teleost fish remains largely unknown. In this study, PKACα from black carp (bcPKACα) has been cloned and its role in the innate immune antiviral signaling pathway was investigated. The open reading frame of bcPKACα gene contains 1056 nucleotides and the immunofluorescence assay verified that PKACα was mainly distributed in the cytoplasm. The reporter assay showed that bcPKACα expression and co-expression of bcPKACα and black carp TAK1 (bcTAK1) could activate the transcription of NF-κB. However, bcTAK1/bcIRF7-mediated IFN transcription was inhibited by bcPKACα. Knockdown of bcPKACα showed slightly enhanced antiviral activity against spring viremia of carp virus (SVCV) compared with control group. Accordingly, the antiviral activity against SVCV and grass carp reovirus (GCRV) of EPC cells co-expressing bcPKACα, bcTAK1 and bcIRF7 was obviously lower than that of EPC cells co-expressing bcTAK1 and bcIRF7. The similar subcellular distribution and interaction between bcPKACα and bcTAK1 were detected by immunofluorescent staining and co-immunoprecipitation assay separately. The data generated in this study demonstrates that bcPKACα associates with bcTAK1 and positively regulates NF-κB signaling, however, negatively regulates TAK1/IRF7 signaling pathway.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yue Ai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Chanyuan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yankai Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weiyi Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunfan He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhuoyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Qiao K, Jiang Y, Hu T, Li S, Gui W. Prokaryotic expression of human-sourced and zebrafish-sourced protein kinase A alpha catalytic subunits combined with in vitro and in silico assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113023. [PMID: 34839138 DOI: 10.1016/j.ecoenv.2021.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The extensively studied cAMP-dependent protein kinase A (PKA) is involved in the regulation of critical cell processes, including metabolism, gene expression, and cell proliferation. Therefore, PKA has been viewed increasingly as potential target for variety of drugs and environmental endocrine disruptors. Consequentially, the preparation of PKA protein became an important initial step for the subsequent exploration of PKA's character in endocrine disrupting effects of pesticides. To investigate PKA protein, which is potential to be the environmental endocrine toxicity target of triazole fungicides, a strategy to heterologously express protein kinase A catalytic alpha subunit of human (hPKAcα) and zebrafish (zPKAcα) in Escherichia coli (E. coli) BL21(DE3) host cells was demonstrated. After optimizing conditions and protein purification, we successfully obtained enzymatically active hPKAcα and zPKAcα. Western blot analysis indicated that the recombinant hPKAcα and zPKAcα still retained their characteristic antigenicity and binding activity, while in vitro kinase activity assays revealed that the recombinant hPKAcα and zPKAcα maintained enzyme activity. By in silico methods including homology modelling and molecular docking, the affinity of ligands and the models of hPKAcα and zPKAcα were further tested. The present study offered a valuable method to achieve the prokaryotic expression of a eukaryotic protein kinase and laid a foundation to facilitate further investigation of toxicological target of triazole pesticides.
Collapse
Affiliation(s)
- Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yao Jiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Tiantian Hu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insect Pests of Zhejiang Province, Zhejiang, Hangzhou 310058, PR China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insect Pests of Zhejiang Province, Zhejiang, Hangzhou 310058, PR China
| |
Collapse
|