Sethi D, Sharma DK, Gupta KD, Srivastava G. SAGA: Stability-Aware Gait Analysis in constraint-free environments.
Gait Posture 2024;
113:215-223. [PMID:
38954927 DOI:
10.1016/j.gaitpost.2024.06.010]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND
Gait abnormality detection is a challenging task in clinical practice. The majority of the current frameworks for gait abnormality detection involve the individual processes of segmentation, feature estimation, feature learning, and similarity assessment. Since each component of these modules is fixed and they are mutually independent, their performance under difficult circumstances is not ideal. We combine those processes into a single framework, a gait abnormality detection system with an end-to-end network.
METHODS
It is made up of convolutional neural networks and Deep-Q-learning methods: one for coordinate estimation and the other for classification. In a single joint learning technique that may be trained together, the two networks are modeled. This method is significantly more efficient for use in real life since it drastically simplifies the conventional step-by-step approach.
RESULTS
The proposed model is experimented on MATLAB R2020a. While considering into consideration the stability factor, our proposed model attained an average case accuracy of 95.3%, a sensitivity of 96.4%, and a specificity of 94.1%.
SIGNIFICANCE
Our paradigm for quantifying gait analysis using commodity equipment will improve access to quantitative gait analysis in medical facilities and rehabilitation centers while also allowing academics to conduct large-scale investigations for gait-related disorders. Numerous experimental findings demonstrate the effectiveness of the proposed strategy and its ability to provide cutting-edge outcomes.
Collapse