2
|
Warshauer EM, Brown A, Fuentes I, Shortt J, Gignoux C, Montinaro F, Metspalu M, Youssefian L, Vahidnezhad H, Jacków J, Christiano AM, Uitto J, Fajardo-Ramírez ÓR, Salas-Alanis JC, McGrath JA, Consuegra L, Rivera C, Maier PA, Runfeldt G, Behar DM, Skorecki K, Sprecher E, Palisson F, Norris DA, Bruckner AL, Kogut I, Bilousova G, Roop DR. Ancestral patterns of recessive dystrophic epidermolysis bullosa mutations in Hispanic populations suggest sephardic ancestry. Am J Med Genet A 2021; 185:3390-3400. [PMID: 34435747 DOI: 10.1002/ajmg.a.62456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genodermatosis caused by mutations in the gene coding for type VII collagen (COL7A1). More than 800 different pathogenic mutations in COL7A1 have been described to date; however, the ancestral origins of many of these mutations have not been precisely identified. In this study, 32 RDEB patient samples from the Southwestern United States, Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were investigated to determine the origins of these mutations and the extent to which shared ancestry contributes to disease prevalence. The results demonstrate both shared European and American origins of RDEB mutations in distinct populations in the Americas and suggest the influence of Sephardic ancestry in at least some RDEB mutations of European origins. Knowledge of ancestry and relatedness among RDEB patient populations will be crucial for the development of future clinical trials and the advancement of novel therapeutics.
Collapse
Affiliation(s)
- Emily Mira Warshauer
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam Brown
- Avotaynu Research Partnership LLC, Englewood, New Jersey, USA
| | - Ignacia Fuentes
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Fundación DEBRA Chile, Santiago, Chile
| | - Jonathan Shortt
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biology and Genetics, University of Bari, Bari, Italy
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joanna Jacków
- Department of Dermatology, Columbia University, New York, New York, USA.,St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Angela M Christiano
- Department of Dermatology, Columbia University, New York, New York, USA.,Department of Genetics and Development, Columbia University, New York, New York, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Óscar R Fajardo-Ramírez
- DEBRA Mexico, Azteca Guadalupe, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Julio C Salas-Alanis
- DEBRA Mexico, Azteca Guadalupe, Mexico.,Instituto Dermatologico de Jalisco, Zapopan, Mexico
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | | | - Carolina Rivera
- Fundación DEBRA Colombia, Bogotá, Colombia.,Department of Medical Genetics, Pediatric Hospital, Fundacion Cardioinfantil-Universidad del Rosario, Bogotá, Colombia
| | - Paul A Maier
- Gene by Gene, Genomic Research Center, Houston, Texas, USA
| | - Goran Runfeldt
- Gene by Gene, Genomic Research Center, Houston, Texas, USA
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Gene by Gene, Genomic Research Center, Houston, Texas, USA
| | - Karl Skorecki
- Azrieli Faculty of Medicine of the Galilee, Bar-Ilan University, Safed, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Francis Palisson
- Fundación DEBRA Chile, Santiago, Chile.,Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - David A Norris
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna L Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Igor Kogut
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dennis R Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Growth Hormone Receptor Mutations Related to Individual Dwarfism. Int J Mol Sci 2018; 19:ijms19051433. [PMID: 29748515 PMCID: PMC5983672 DOI: 10.3390/ijms19051433] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH⁻GHR⁻IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH⁻GHR⁻IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development.
Collapse
|