1
|
Hassan C, Bisschops R, Sharma P, Mori Y. Colon Cancer Screening, Surveillance, and Treatment: Novel Artificial Intelligence Driving Strategies in the Management of Colon Lesions. Gastroenterology 2025:S0016-5085(25)00478-0. [PMID: 40054749 DOI: 10.1053/j.gastro.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/25/2025]
Abstract
Colonoscopy, a crucial procedure for detecting and removing colorectal polyps, has seen transformative advancements through the integration of artificial intelligence, specifically in computer-aided detection (CADe) and diagnosis (CADx). These tools enhance real-time detection and characterization of lesions, potentially reducing human error, and standardizing the quality of colonoscopy across endoscopists. CADe has proven effective in increasing adenoma detection rate, potentially reducing long-term colorectal cancer incidence. However, CADe's benefits are accompanied by challenges, such as potentially longer procedure times, increased non-neoplastic polyp resections, and a higher surveillance burden. CADx, although promising in differentiating neoplastic and non-neoplastic diminutive polyps, encounters limitations in accuracy, particularly in the proximal colon. Real-world data also revealed gaps between trial efficacy and practical outcomes, emphasizing the need for further research in uncontrolled settings. Moreover, CADx limited specificity and binary output underscore the necessity for explainable artificial intelligence to gain endoscopists' trust. This review aimed to explore the benefits, harms, and limitations of artificial intelligence for colon cancer screening, surveillance, and treatment focusing on CADe and CADx systems for lesion detection and characterization, respectively, while addressing challenges in integrating these technologies into clinical practice.
Collapse
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Department of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Rozzano, Italy.
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research Center in Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan; Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Misawa M, Kudo SE. Current Status of Artificial Intelligence Use in Colonoscopy. Digestion 2024; 106:138-145. [PMID: 39724867 DOI: 10.1159/000543345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Artificial intelligence (AI) has significantly impacted medical imaging, particularly in gastrointestinal endoscopy. Computer-aided detection and diagnosis systems (CADe and CADx) are thought to enhance the quality of colonoscopy procedures. SUMMARY Colonoscopy is essential for colorectal cancer screening but often misses a significant percentage of adenomas. AI-assisted systems employing deep learning offer improved detection and differentiation of colorectal polyps, potentially increasing adenoma detection rates by 8%-10%. The main benefit of CADe is in detecting small adenomas, whereas it has a limited impact on advanced neoplasm detection. Recent advancements include real-time CADe systems and CADx for histopathological predictions, aiding in the differentiation of neoplastic and nonneoplastic lesions. Biases such as the Hawthorne effect and potential overdiagnosis necessitate large-scale clinical trials to validate the long-term benefits of AI. Additionally, novel concepts such as computer-aided quality improvement systems are emerging to address limitations facing current CADe systems. KEY MESSAGES Despite the potential of AI for enhancing colonoscopy outcomes, its effectiveness in reducing colorectal cancer incidence and mortality remains unproven. Further prospective studies are essential to establish the overall utility and clinical benefits of AI in colonoscopy.
Collapse
Affiliation(s)
- Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Tsuzuki, Yokohama, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Tsuzuki, Yokohama, Japan
| |
Collapse
|
3
|
Mori Y, Jin EH, Lee D. Enhancing artificial intelligence-doctor collaboration for computer-aided diagnosis in colonoscopy through improved digital literacy. Dig Liver Dis 2024; 56:1140-1143. [PMID: 38105144 DOI: 10.1016/j.dld.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Establishing appropriate trust and maintaining a balanced reliance on digital resources are vital for accurate optical diagnoses and effective integration of computer-aided diagnosis (CADx) in colonoscopy. Active learning using diverse polyp image datasets can help in developing precise CADx systems. Enhancing doctors' digital literacy and interpreting their results is crucial. Explainable artificial intelligence (AI) addresses opacity, and textual descriptions, along with AI-generated content, deepen the interpretability of AI-based findings by doctors. AI conveying uncertainties and decision confidence aids doctors' acceptance of results. Optimal AI-doctor collaboration requires improving algorithm performance, transparency, addressing uncertainties, and enhancing doctors' optical diagnostic skills.
Collapse
Affiliation(s)
- Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Eun Hyo Jin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea.
| | - Dongheon Lee
- Department of Biomedical Engineering, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Biomedical Engineering, Chungnam National University Hospital, Daejeon, South Korea
| |
Collapse
|
4
|
Kato S, Kudo SE, Minegishi Y, Miyata Y, Maeda Y, Kuroki T, Takashina Y, Mochizuki K, Tamura E, Abe M, Sato Y, Sakurai T, Kouyama Y, Tanaka K, Ogawa Y, Nakamura H, Ichimasa K, Ogata N, Hisayuki T, Hayashi T, Wakamura K, Miyachi H, Baba T, Ishida F, Nemoto T, Misawa M. Impact of computer-aided characterization for diagnosis of colorectal lesions, including sessile serrated lesions: Multireader, multicase study. Dig Endosc 2024; 36:341-350. [PMID: 37937532 DOI: 10.1111/den.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/06/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES Computer-aided characterization (CADx) may be used to implement optical biopsy strategies into colonoscopy practice; however, its impact on endoscopic diagnosis remains unknown. We aimed to evaluate the additional diagnostic value of CADx when used by endoscopists for assessing colorectal polyps. METHODS This was a single-center, multicase, multireader, image-reading study using randomly extracted images of pathologically confirmed polyps resected between July 2021 and January 2022. Approved CADx that could predict two-tier classification (neoplastic or nonneoplastic) by analyzing narrow-band images of the polyps was used to obtain a CADx diagnosis. Participating endoscopists determined if the polyps were neoplastic or not and noted their confidence level using a computer-based, image-reading test. The test was conducted twice with a 4-week interval: the first test was conducted without CADx prediction and the second test with CADx prediction. Diagnostic performances for neoplasms were calculated using the pathological diagnosis as reference and performances with and without CADx prediction were compared. RESULTS Five hundred polyps were randomly extracted from 385 patients and diagnosed by 14 endoscopists (including seven experts). The sensitivity for neoplasia was significantly improved by referring to CADx (89.4% vs. 95.6%). CADx also had incremental effects on the negative predictive value (69.3% vs. 84.3%), overall accuracy (87.2% vs. 91.8%), and high-confidence diagnosis rate (77.4% vs. 85.8%). However, there was no significant difference in specificity (80.1% vs. 78.9%). CONCLUSIONS Computer-aided characterization has added diagnostic value for differentiating colorectal neoplasms and may improve the high-confidence diagnosis rate.
Collapse
Affiliation(s)
- Shun Kato
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yosuke Minegishi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuki Miyata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Takanori Kuroki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuki Takashina
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kenichi Mochizuki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Eri Tamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masahiro Abe
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuta Sato
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tatsuya Sakurai
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuta Kouyama
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kenta Tanaka
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hiroki Nakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Katsuro Ichimasa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
- Department of Gastroenterology and Hepatology, National University Hospital, Singapore City, Singapore
| | - Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tomokazu Hisayuki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Takemasa Hayashi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kunihiko Wakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hideyuki Miyachi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Toshiyuki Baba
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Fumio Ishida
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tetsuo Nemoto
- Department of Diagnostic Pathology and Laboratory Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| |
Collapse
|
5
|
Takashina Y, Kudo SE, Kouyama Y, Ichimasa K, Miyachi H, Mori Y, Kudo T, Maeda Y, Ogawa Y, Hayashi T, Wakamura K, Enami Y, Sawada N, Baba T, Nemoto T, Ishida F, Misawa M. Whole slide image-based prediction of lymph node metastasis in T1 colorectal cancer using unsupervised artificial intelligence. Dig Endosc 2023; 35:902-908. [PMID: 36905308 DOI: 10.1111/den.14547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES Lymph node metastasis (LNM) prediction for T1 colorectal cancer (CRC) is critical for determining the need for surgery after endoscopic resection because LNM occurs in 10%. We aimed to develop a novel artificial intelligence (AI) system using whole slide images (WSIs) to predict LNM. METHODS We conducted a retrospective single center study. To train and test the AI model, we included LNM status-confirmed T1 and T2 CRC between April 2001 and October 2021. These lesions were divided into two cohorts: training (T1 and T2) and testing (T1). WSIs were cropped into small patches and clustered by unsupervised K-means. The percentage of patches belonging to each cluster was calculated from each WSI. Each cluster's percentage, sex, and tumor location were extracted and learned using the random forest algorithm. We calculated the areas under the receiver operating characteristic curves (AUCs) to identify the LNM and the rate of over-surgery of the AI model and the guidelines. RESULTS The training cohort contained 217 T1 and 268 T2 CRCs, while 100 T1 cases (LNM-positivity 15%) were the test cohort. The AUC of the AI system for the test cohort was 0.74 (95% confidence interval [CI] 0.58-0.86), and 0.52 (95% CI 0.50-0.55) using the guidelines criteria (P = 0.0028). This AI model could reduce the 21% of over-surgery compared to the guidelines. CONCLUSION We developed a pathologist-independent predictive model for LNM in T1 CRC using WSI for determination of the need for surgery after endoscopic resection. TRIAL REGISTRATION UMIN Clinical Trials Registry (UMIN000046992, https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000053590).
Collapse
Affiliation(s)
- Yuki Takashina
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuta Kouyama
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Katsuro Ichimasa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore City, Singapore
| | - Hideyuki Miyachi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Toyoki Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Takemasa Hayashi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kunihiko Wakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuta Enami
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Naruhiko Sawada
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Toshiyuki Baba
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tetsuo Nemoto
- Department of Diagnostic Pathology, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Fumio Ishida
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| |
Collapse
|
6
|
Halvorsen N, Mori Y. Artificial intelligence and upper gastrointestinal endoscopy: what is the optimal study design? Minerva Surg 2023; 78:81-85. [PMID: 36843555 DOI: 10.23736/s2724-5691.22.09810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Upper gastrointestinal cancers (i.e., esophageal and gastric cancers) are common cancers worldwide with high mortality and morbidity. Although there is no randomized controlled trial-based evidence, early detection with endoscopy is expected to positively affect prognosis and morbidity. However, endoscopic procedures are always accompanied by human-induced errors such as overlooking of neoplasia and cancers. Recently, the use of artificial intelligence (AI) during upper gastrointestinal endoscopy is catching attention because it is expected to reduce human-induced variability of the examination. This review article introduces the overview of the expectation and current status of the AI tools for upper gastrointestinal endoscopy and shares possible challenges and corresponding solutions with readers.
Collapse
Affiliation(s)
- Natalie Halvorsen
- Clinical Effectiveness Research Group, University Hospital of Oslo, University of Oslo, Oslo, Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University Hospital of Oslo, University of Oslo, Oslo, Norway - .,Department of Transplantation Medicine, University Hospital of Oslo, Oslo, Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
7
|
Mori Y, Kaminski MF, Hassan C, Bretthauer M. Clinical trial designs for artificial intelligence in gastrointestinal endoscopy. Lancet Gastroenterol Hepatol 2022; 7:785-786. [PMID: 35932767 DOI: 10.1016/s2468-1253(22)00232-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yuichi Mori
- Clinical Effectiveness Research Group, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Michal F Kaminski
- Clinical Effectiveness Research Group, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland; Department of Oncological Gastroenterology and Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Cesare Hassan
- Endoscopy Unit, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michael Bretthauer
- Clinical Effectiveness Research Group, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|