1
|
Ran J, Zhou M, Wen H. Artificial intelligence in inflammatory bowel disease. Saudi J Gastroenterol 2025:00936815-990000000-00126. [PMID: 40275746 DOI: 10.4103/sjg.sjg_46_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
ABSTRACT Inflammatory bowel disease (IBD) is a complex condition influenced by various intestinal factors. Advances in next-generation sequencing, high-throughput omics, and molecular network technologies have significantly accelerated research in this field. The emergence of artificial intelligence (AI) has further enhanced the efficient utilization and interpretation of datasets, enabling the discovery of clinically actionable insights. AI is now extensively applied in gastroenterology, where it aids in endoscopic analyses, including the diagnosis of colorectal cancer, precancerous polyps, gastrointestinal inflammatory lesions, and bleeding. Additionally, AI supports clinicians in patient stratification, predicting disease progression and treatment responses, and adjusting treatment plans in a timely manner. This approach not only reduces healthcare costs but also improves patient health and safety. This review outlines the principles of AI, the current research landscape, and future directions for its applications in IBD, with the goal of advancing targeted treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Ran
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | |
Collapse
|
2
|
Lu J, Liu X, Ji X, Jiang Y, Zuo A, Guo Z, Yang S, Peng H, Sun F, Lu D. Predicting PD-L1 status in NSCLC patients using deep learning radiomics based on CT images. Sci Rep 2025; 15:12495. [PMID: 40216830 PMCID: PMC11992188 DOI: 10.1038/s41598-025-91575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/21/2025] [Indexed: 04/14/2025] Open
Abstract
Radiomics refers to the utilization of automated or semi-automated techniques to extract and analyze numerous quantitative features from medical images, such as computerized tomography (CT) or magnetic resonance imaging (MRI) scans. This study aims to develop a deep learning radiomics (DLR)-based approach for predicting programmed death-ligand 1 (PD-L1) expression in patients with non-small cell lung cancer (NSCLC). Data from 352 NSCLC patients with known PD-L1 expression were collected, of which 48.29% (170/352) were tested positive for PD-L1 expression. Tumor regions of interest (ROI) were semi-automatically segmented based on CT images, and DL features were extracted using Residual Network 50. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection and dimensionality reduction. Seven algorithms were used to build models, and the most optimal ones were identified. A combined model integrating DLR with clinical data was also developed. The predictive performance of each model was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve analysis. The DLR model, based on CT images, demonstrated an AUC of 0.85 (95% confidence interval (CI), 0.82-0.88), sensitivity of 0.80 (0.74-0.85), and specificity of 0.73 (0.70-0.77) for predicting PD-L1 status. The integrated model exhibited superior performance, with an AUC of 0.91 (0.87-0.95), sensitivity of 0.85 (0.82-0.89), and specificity of 0.75 (0.72-0.80). Our findings indicate that the DLR model holds promise as a valuable tool for predicting the PD-L1 status in patients with NSCLC, which can greatly assist in clinical decision-making and the selection of personalized treatment strategies.
Collapse
Affiliation(s)
- Jiameng Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau Special Administrative Region, People's Republic of China
| | - Xinyi Liu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China
| | - Xiaoqing Ji
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Yunxiu Jiang
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China
| | - Anli Zuo
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China
| | - Zihan Guo
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China
| | - Shuran Yang
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China
| | - Haiying Peng
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Yibin City, 644002, Yibin, People's Republic of China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, Jining No.1 People's Hospital, 272000, Jining, People's Republic of China
| | - Degan Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Bin Y, Peng R, Lee Y, Lee Z, Liu Y. Artificial intelligence-assisted capsule endoscopy for detecting lesions in Crohn's disease: a systematic review and meta-analysis. Front Artif Intell 2025; 8:1531362. [PMID: 40235858 PMCID: PMC11996797 DOI: 10.3389/frai.2025.1531362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Background and objectives Crohn's disease (CD), a complex member of the inflammatory bowel disease spectrum, is characterized by the diversity and skipping distribution of intestinal mucosal lesions, significantly complicating its differential diagnosis with intestinal diseases such as ulcerative colitis and intestinal tuberculosis. With the increasing application of artificial intelligence (AI) in the medical field, its utilization in primary diagnosis has become more widespread. However, there is a lack of systematic evaluation regarding the specific efficacy of AI in identifying CD through capsule endoscopy. Methods This study conducted a comprehensive search of PubMed databases, Cochrane, EMBASE, and Web of Science up to May 21, 2024, to collect relevant literature. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to rigorously assess the quality of included studies, and detailed information on study characteristics and AI algorithms was extracted. A bivariate mixed-effects model was employed to synthesize and analyze the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, meta-regression and subgroup analyses were conducted to delve into the potential sources of heterogeneity. Results Ultimately, eight studies encompassing 11 distinct AI models were included in this meta-analysis. The overall area under the curve (AUC) for AI in identifying CD through capsule endoscopy was 99% (95% CI, 100%-0.00), indicating high diagnostic accuracy. Specifically, the pooled sensitivity was 94% (95% CI, 93-96%), specificity was 97% (95% CI, 95-98%), positive likelihood ratio (PLR) was 32.7 (95% CI, 19.9-53.6), negative likelihood ratio (NLR) was 6% (95% CI, 4-7%), and diagnostic odds ratio (DOR) reached 576 (95% CI, 295-1,127). Meta-regression analysis further revealed that AI algorithm type, study population size, and study design might be key sources of heterogeneity. Conclusion This study demonstrates the significant potential of AI technology in assisting endoscopists in detecting and identifying CD patients through capsule endoscopy. However, given the limitations and heterogeneity of current research, more high-quality, large-sample studies are needed to comprehensively and thoroughly evaluate the practical application value of AI in CD diagnosis, thereby promoting its widespread adoption and optimization in clinical practice.
Collapse
Affiliation(s)
- Yuling Bin
- Department of Intensive Care Medicine, Hengyang Central Hospital, Hengyang, China
| | - Rumei Peng
- Department of Pathology, Changsha Medical University, Changsha, China
| | - Yaqian Lee
- Department of Intensive Care Medicine, Hengyang Central Hospital, Hengyang, China
| | - Zhijie Lee
- Department of Intensive Care Medicine, Hengyang Central Hospital, Hengyang, China
| | - Yang Liu
- Department of Intensive Care Medicine, Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
4
|
Levartovsky A, Albshesh A, Grinman A, Shachar E, Lahat A, Eliakim R, Kopylov U. Enhancing diagnostics: ChatGPT-4 performance in ulcerative colitis endoscopic assessment. Endosc Int Open 2025; 13:a25420943. [PMID: 40109324 PMCID: PMC11922305 DOI: 10.1055/a-2542-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Background and study aims The Mayo Endoscopic Subscore (MES) is widely utilized for assessing mucosal activity in ulcerative colitis (UC). Artificial intelligence has emerged as a promising tool for enhancing diagnostic precision and addressing interobserver variability. This study evaluated the diagnostic accuracy of ChatGPT-4, a multimodal large language model, in identifying and grading endoscopic images of UC patients using the MES. Patients and methods Real-world endoscopic images of UC patients were reviewed by an expert consensus board. Each image was graded based on the MES. Only images that were uniformly graded were subsequently provided to three inflammatory bowel disease (IBD) specialists and ChatGPT-4. Severity gradings of the IBD specialists and ChatGPT-4 were compared with assessments made by the expert consensus board. Results Thirty of 50 images were graded with complete agreement among the experts. Compared with the consensus board, ChatGPT-4 gradings had a mean accuracy rate of 78.9% whereas the mean accuracy rate for the IBD specialists was 81.1%. Between the two groups, there was no statistically significant difference in mean accuracy rates ( P = 0.71) and a high degree of reliability was found. Conclusions ChatGPT-4 has the potential to assess mucosal inflammation severity from endoscopic images of UC patients, without prior configuration or fine-tuning. Performance rates were comparable to those of IBD specialists.
Collapse
Affiliation(s)
- Asaf Levartovsky
- Gastroenterology, affiliated with Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel
| | - Ahmad Albshesh
- Gastroenterology, affiliated with Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel
| | - Ana Grinman
- Gastroenterology, affiliated with Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel
| | - Eyal Shachar
- Gastroenterology, affiliated with Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel
| | - Adi Lahat
- Gastroenterology, affiliated with Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel
| | - Rami Eliakim
- Gastroenterology, affiliated with Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel
| | - Uri Kopylov
- Gastroenterology, affiliated with Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
5
|
Iacucci M, Santacroce G, Zammarchi I, Maeda Y, Del Amor R, Meseguer P, Kolawole BB, Chaudhari U, Di Sabatino A, Danese S, Mori Y, Grisan E, Naranjo V, Ghosh S. Artificial intelligence and endo-histo-omics: new dimensions of precision endoscopy and histology in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2024; 9:758-772. [PMID: 38759661 DOI: 10.1016/s2468-1253(24)00053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 05/19/2024]
Abstract
Integrating artificial intelligence into inflammatory bowel disease (IBD) has the potential to revolutionise clinical practice and research. Artificial intelligence harnesses advanced algorithms to deliver accurate assessments of IBD endoscopy and histology, offering precise evaluations of disease activity, standardised scoring, and outcome prediction. Furthermore, artificial intelligence offers the potential for a holistic endo-histo-omics approach by interlacing and harmonising endoscopy, histology, and omics data towards precision medicine. The emerging applications of artificial intelligence could pave the way for personalised medicine in IBD, offering patient stratification for the most beneficial therapy with minimal risk. Although artificial intelligence holds promise, challenges remain, including data quality, standardisation, reproducibility, scarcity of randomised controlled trials, clinical implementation, ethical concerns, legal liability, and regulatory issues. The development of standardised guidelines and interdisciplinary collaboration, including policy makers and regulatory agencies, is crucial for addressing these challenges and advancing artificial intelligence in IBD clinical practice and trials.
Collapse
Affiliation(s)
- Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland.
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Irene Zammarchi
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Rocío Del Amor
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain
| | - Pablo Meseguer
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain; Valencian Graduate School and Research Network of Artificial Intelligence, Valencia, Spain
| | | | | | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway; Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Enrico Grisan
- School of Engineering, London South Bank University, London, UK
| | - Valery Naranjo
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| |
Collapse
|
6
|
Zha B, Cai A, Wang G. Diagnostic Accuracy of Artificial Intelligence in Endoscopy: Umbrella Review. JMIR Med Inform 2024; 12:e56361. [PMID: 39093715 PMCID: PMC11296324 DOI: 10.2196/56361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 08/04/2024] Open
Abstract
Background Some research has already reported the diagnostic value of artificial intelligence (AI) in different endoscopy outcomes. However, the evidence is confusing and of varying quality. Objective This review aimed to comprehensively evaluate the credibility of the evidence of AI's diagnostic accuracy in endoscopy. Methods Before the study began, the protocol was registered on PROSPERO (CRD42023483073). First, 2 researchers searched PubMed, Web of Science, Embase, and Cochrane Library using comprehensive search terms. Then, researchers screened the articles and extracted information. We used A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR2) to evaluate the quality of the articles. When there were multiple studies aiming at the same result, we chose the study with higher-quality evaluations for further analysis. To ensure the reliability of the conclusions, we recalculated each outcome. Finally, the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to evaluate the credibility of the outcomes. Results A total of 21 studies were included for analysis. Through AMSTAR2, it was found that 8 research methodologies were of moderate quality, while other studies were regarded as having low or critically low quality. The sensitivity and specificity of 17 different outcomes were analyzed. There were 4 studies on esophagus, 4 studies on stomach, and 4 studies on colorectal regions. Two studies were associated with capsule endoscopy, two were related to laryngoscopy, and one was related to ultrasonic endoscopy. In terms of sensitivity, gastroesophageal reflux disease had the highest accuracy rate, reaching 97%, while the invasion depth of colon neoplasia, with 71%, had the lowest accuracy rate. On the other hand, the specificity of colorectal cancer was the highest, reaching 98%, while the gastrointestinal stromal tumor, with only 80%, had the lowest specificity. The GRADE evaluation suggested that the reliability of most outcomes was low or very low. Conclusions AI proved valuabe in endoscopic diagnoses, especially in esophageal and colorectal diseases. These findings provide a theoretical basis for developing and evaluating AI-assisted systems, which are aimed at assisting endoscopists in carrying out examinations, leading to improved patient health outcomes. However, further high-quality research is needed in the future to fully validate AI's effectiveness.
Collapse
Affiliation(s)
- Bowen Zha
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Angshu Cai
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Maeda Y, Kudo SE, Santacroce G, Ogata N, Misawa M, Iacucci M. Artificial intelligence-assisted colonoscopy to identify histologic remission and predict the outcomes of patients with ulcerative colitis: A systematic review. Dig Liver Dis 2024; 56:1119-1125. [PMID: 38643020 DOI: 10.1016/j.dld.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
This systematic review evaluated the current status of AI-assisted colonoscopy to identify histologic remission and predict the clinical outcomes of patients with ulcerative colitis. The use of artificial intelligence (AI) has increased substantially across several medical fields, including gastrointestinal endoscopy. Evidence suggests that it may be helpful to predict histologic remission and relapse, which would be beneficial because current histological diagnosis is limited by the inconvenience of obtaining biopsies and the high cost and time-intensiveness of pathological diagnosis. MEDLINE and the Cochrane Central Register of Controlled Trials were searched for studies published between January 1, 2000, and October 31, 2023. Nine studies fulfilled the selection criteria and were included; five evaluated the prediction of histologic remission, two assessed the prediction of clinical outcomes, and two evaluated both. Seven were prospective observational or cohort studies, while two were retrospective observational studies. No randomized controlled trials were identified. AI-assisted colonoscopy demonstrated sensitivity between 65 %-98 % and specificity values of 80 %-97 % for identifying histologic remission. Furthermore, it was able to predict future relapse in patients with ulcerative colitis. However, several challenges and barriers still exist to its routine clinical application, which should be overcome before the true potential of AI-assisted colonoscopy can be fully realized.
Collapse
Affiliation(s)
- Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan; APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland.
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland
| | - Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
8
|
Hamada T, Yasaka K, Nakai Y, Fukuda R, Hakuta R, Ishigaki K, Kanai S, Noguchi K, Oyama H, Saito T, Sato T, Suzuki T, Takahara N, Isayama H, Abe O, Fujishiro M. Computed tomography-based prediction of pancreatitis following biliary metal stent placement with the convolutional neural network. Endosc Int Open 2024; 12:E772-E780. [PMID: 38904060 PMCID: PMC11188753 DOI: 10.1055/a-2298-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 06/22/2024] Open
Abstract
Background and study aims Pancreatitis is a potentially lethal adverse event of endoscopic transpapillary placement of a self-expandable metal stent (SEMS) for malignant biliary obstruction (MBO). Deep learning-based image recognition has not been investigated in predicting pancreatitis in this setting. Patients and methods We included 70 patients who underwent endoscopic placement of a SEMS for nonresectable distal MBO. We constructed a convolutional neural network (CNN) model for pancreatitis prediction using a series of pre-procedure computed tomography images covering the whole pancreas (≥ 120,960 augmented images in total). We examined the additional effects of the CNN-based probabilities on the following machine learning models based on clinical parameters: logistic regression, support vector machine with a linear or RBF kernel, random forest classifier, and gradient boosting classifier. Model performance was assessed based on the area under the curve (AUC) in the receiver operating characteristic analysis, positive predictive value (PPV), accuracy, and specificity. Results The CNN model was associated with moderate levels of performance metrics: AUC, 0.67; PPV, 0.45; accuracy, 0.66; and specificity, 0.63. When added to the machine learning models, the CNN-based probabilities increased the performance metrics. The logistic regression model with the CNN-based probabilities had an AUC of 0.74, PPV of 0.85, accuracy of 0.83, and specificity of 0.96, compared with 0.72, 0.78, 0.77, and 0.96, respectively, without the probabilities. Conclusions The CNN-based model may increase predictability for pancreatitis following endoscopic placement of a biliary SEMS. Our findings support the potential of deep learning technology to improve prognostic models in pancreatobiliary therapeutic endoscopy.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Rintaro Fukuda
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Hakuta
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunaga Ishigaki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiko Kanai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensaku Noguchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Oyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomotaka Saito
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naminatsu Takahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Lee HH, Singh S. Quantifying Endoscopic Activity in Ulcerative Colitis: Innovation, Powered by Artificial Intelligence. Gastroenterology 2024; 166:25-26. [PMID: 37913893 DOI: 10.1053/j.gastro.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Han Hee Lee
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California; Division of Gastroenterology, Department of Internal Medicine, Yeouido St. Mary's Hospital College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Siddharth Singh
- Divisions of Gastroenterology and Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
10
|
Lv B, Ma L, Shi Y, Tao T, Shi Y. A systematic review and meta-analysis of artificial intelligence-diagnosed endoscopic remission in ulcerative colitis. iScience 2023; 26:108120. [PMID: 37867944 PMCID: PMC10585391 DOI: 10.1016/j.isci.2023.108120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Endoscopic remission is an important therapeutic goal in ulcerative colitis (UC). The Ulcerative Colitis Endoscopic Index of Severity (UCEIS) and Mayo Endoscopic Score (MES) are the commonly used endoscopic scoring criteria. This systematic review and meta-analysis aimed to evaluate the accuracy of artificial intelligence (AI) in diagnosing endoscopic remission in UC. We also performed a meta-analysis of each of the four endoscopic remission criteria (UCEIS = 0, MES = 0, UCEIS = <1, MES = <1). Eighteen studies involving 13,687 patients were included. The combined sensitivity and specificity of AI for diagnosing endoscopic remission in UC was 87% (95% confidence interval [CI]:81-92%) and 92% (95% CI: 89-94%), respectively. The area under the curve (AUC) was 0.96 (95% CI: 0.94-0.97). The results showed that the AI model performed well regardless of which criteria were used to define endoscopic remission of UC.
Collapse
Affiliation(s)
- Bing Lv
- School of Computer Science and Technology, Shandong University of Technology, NO.266, Xincunxi Road, Zibo, Shandong 255000, China
| | - Lihong Ma
- Department of Gastroenterology, Zibo Central Hospital, No.10 Shanghai Road, Zibo, Shandong 255000, China
| | - Yanping Shi
- Department of Pediatrics, Zhoucun Maternal and Child Health Care Hospital, No.72 Mianhuashi Street, Zibo, Shandong 255000, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, No.10 Shanghai Road, Zibo, Shandong 255000, China
| | - Yanting Shi
- Department of Gastroenterology, Zibo Central Hospital, No.10 Shanghai Road, Zibo, Shandong 255000, China
| |
Collapse
|
11
|
Biamonte P, D’Amico F, Fasulo E, Barà R, Bernardi F, Allocca M, Zilli A, Danese S, Furfaro F. New Technologies in Digestive Endoscopy for Ulcerative Colitis Patients. Biomedicines 2023; 11:2139. [PMID: 37626636 PMCID: PMC10452412 DOI: 10.3390/biomedicines11082139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the colon and rectum. Endoscopy plays a crucial role in the diagnosis and management of UC. Recent advancements in endoscopic technology, including chromoendoscopy, confocal laser endomicroscopy, endocytoscopy and the use of artificial intelligence, have revolutionized the assessment and treatment of UC patients. These innovative techniques enable early detection of dysplasia and cancer, more precise characterization of disease extent and severity and more targeted biopsies, leading to improved diagnosis and disease monitoring. Furthermore, these advancements have significant implications for therapeutic decision making, empowering clinicians to carefully consider a range of treatment options, including pharmacological therapies, endoscopic interventions and surgical approaches. In this review, we provide an overview of the latest endoscopic technologies and their applications for diagnosing and monitoring UC. We also discuss their impact on treatment decision making, highlighting the potential benefits and limitations of each technique.
Collapse
Affiliation(s)
- Paolo Biamonte
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Ernesto Fasulo
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Rukaia Barà
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| |
Collapse
|