1
|
Chowdhury TA, Luy DA, Scapellato G, Farache D, Lee ASY, Quinn CC. Ortholog of autism candidate gene RBM27 regulates mitoribosomal assembly factor MALS-1 to protect against mitochondrial dysfunction and axon degeneration during neurodevelopment. PLoS Biol 2024; 22:e3002876. [PMID: 39480871 PMCID: PMC11556708 DOI: 10.1371/journal.pbio.3002876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/12/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and attention-deficit hyperactivity disorder (ADHD). However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26, the Caenorhabditis elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against axonal defects by negatively regulating expression of the MALS-1 (MALSU1) mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with defects in axon overlap and axon degeneration that occurs during larval development. Using a biochemical screen, we identified the mRNA for the MALS-1 mitoribosomal assembly factor as a binding partner for RBM-26. Loss of RBM-26 function causes a dramatic overexpression of mals-1 mRNA and MALS-1 protein. Moreover, genetic analysis indicates that this overexpression of MALS-1 is responsible for the mitochondrial and axon degeneration defects in rbm-26 mutants. These observations reveal a mechanism that regulates expression of a mitoribosomal assembly factor to protect against axon degeneration during neurodevelopment.
Collapse
Affiliation(s)
- Tamjid A. Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - David A. Luy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Garrett Scapellato
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Amy S. Y. Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
2
|
Chowdhury TA, Luy DA, Scapellato G, Farache D, Lee ASY, Quinn CC. Autism candidate gene rbm-26 ( RBM26/27) regulates MALS-1 to protect against mitochondrial dysfunction and axon degeneration during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562060. [PMID: 37873356 PMCID: PMC10592788 DOI: 10.1101/2023.10.12.562060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and ADHD. However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26, the C. elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against axonal defects by negatively regulating expression of the MALS-1 (MALSU1) mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with defects in in axon overlap and axon degeneration that occurs during larval development. Using a biochemical screen, we identified the mRNA for the MALS-1 mitoribosomal assembly factor as a binding partner for RBM-26. Loss of RBM-26 function causes a dramatic overexpression of mals-1 mRNA and MALS-1 protein. Moreover, genetic analysis indicates that this overexpression of MALS-1 is responsible for the mitochondrial and axon degeneration defects in rbm-26 mutants. These observations reveal a mechanism that regulates expression of a mitoribosomal assembly factor to protect against axon degeneration during neurodevelopment.
Collapse
Affiliation(s)
- Tamjid A Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - David A Luy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Garrett Scapellato
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy SY Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
3
|
Yang Y, Yang R, Kang B, Qian S, He X, Zhang X. Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons. Cell Rep 2023; 42:113335. [PMID: 37889749 PMCID: PMC10842930 DOI: 10.1016/j.celrep.2023.113335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Dysregulation of alternative splicing has been repeatedly associated with neurodevelopmental disorders, but the extent of cell-type-specific splicing in human neural development remains largely uncharted. Here, single-cell long-read sequencing in induced pluripotent stem cell (iPSC)-derived cerebral organoids identifies over 31,000 uncatalogued isoforms and 4,531 cell-type-specific splicing events. Long reads uncover coordinated splicing and cell-type-specific intron retention events, which are challenging to study with short reads. Retained neuronal introns are enriched in RNA splicing regulators, showing shorter lengths, higher GC contents, and weaker 5' splice sites. We use this dataset to explore the biological processes underlying neurological disorders, focusing on autism. In comparison with prior transcriptomic data, we find that the splicing program in autistic brains is closer to the progenitor state than differentiated neurons. Furthermore, cell-type-specific exons harbor significantly more de novo mutations in autism probands than in siblings. Overall, these results highlight the importance of cell-type-specific splicing in autism and neuronal gene regulation.
Collapse
Affiliation(s)
- Yalan Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Runwei Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Bowei Kang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Sheng Qian
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xin He
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| | - Xiaochang Zhang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Bundalian L, Su YY, Chen S, Velluva A, Kirstein AS, Garten A, Biskup S, Battke F, Lal D, Heyne HO, Platzer K, Lin CC, Lemke JR, Le Duc D. Epilepsies of presumed genetic etiology show enrichment of rare variants that occur in the general population. Am J Hum Genet 2023; 110:1110-1122. [PMID: 37369202 PMCID: PMC10357498 DOI: 10.1016/j.ajhg.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.
Collapse
Affiliation(s)
- Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany.
| | - Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Siwei Chen
- Analytic and Translational Genetics Unit, Department of Medicine, Boston, MA, USA; Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akhil Velluva
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Anna Sophia Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH, 72076 Tuebingen, Germany; Hertie-Institute for Clinical Brain Research, 72070 Tubingen, Germany
| | | | - Dennis Lal
- Analytic and Translational Genetics Unit, Department of Medicine, Boston, MA, USA; Massachusetts General Hospital, Boston, MA 02114, USA; Cologne Center for Genomics, University of Cologne, 50937 Cologne, Germany
| | - Henrike O Heyne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Hasso-Plattner-Institut for Digital Engineering, University of Potsdam, Potsdam, Germany; Hasso Plattner Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY, USA; Institute for Molecular Medicine Finland: FIMM, University of Helsinki, Helsinki, Finland
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany; Center for Rare Diseases, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
5
|
Bundalian L, Su YY, Chen S, Velluva A, Kirstein AS, Garten A, Biskup S, Battke F, Lal D, Heyne HO, Platzer K, Lin CC, Lemke JR, Le Duc D. The role of rare genetic variants enrichment in epilepsies of presumed genetic etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.17.23284702. [PMID: 36974069 PMCID: PMC10041669 DOI: 10.1101/2023.01.17.23284702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Previous studies suggested that severe epilepsies e.g., developmental and epileptic encephalopathies (DEE) are mainly caused by ultra-rare de novo genetic variants. For milder phenotypes, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 controls. Here, we separately analyzed three different groups of epilepsies : severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in controls at a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD≥20), and to have an odds ratio in epilepsy cases ≥2. We identified genes enriched with QRVs in DEE (n=21), NAFE (n=72), and GGE (n=32) - the number of enriched genes are found greatest in NAFE and least in DEE. This suggests that rare variants may play a more important role for causality of NAFE than in DEE. Moreover, we found that QRV-carrying genes e.g., HSGP2, FLNA or TNC are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE, while in DEE and GGE, the contribution of such variants appears more limited.
Collapse
Affiliation(s)
- Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
| | - Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Siwei Chen
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akhil Velluva
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Anna Sophia Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH, 72076, Tuebingen, Germany
- Hertie-Institute for Clinical Brain Research, 72070, Tubingen, Germany
| | | | - Dennis Lal
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Cologne Center for Genomics, University of Cologne, 50937 Cologne, Germany
| | - Henrike O Heyne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Hasso-Plattner-Institut for Digital Engineering, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute at Mount Sinai, Mount Sinai School of Medicine, NY, US
- Institute for Molecular Medicine Finland: FIMM, University of Helsinki, Helsinki, Finland
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, 4103 Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Desprez F, Ung DC, Vourc’h P, Jeanne M, Laumonnier F. Contribution of the dihydropyrimidinase-like proteins family in synaptic physiology and in neurodevelopmental disorders. Front Neurosci 2023; 17:1154446. [PMID: 37144098 PMCID: PMC10153444 DOI: 10.3389/fnins.2023.1154446] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
The dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status. The roles of DPYSL proteins at early stages of brain development have been described in the past years, particularly for DPYSL2 and DPYSL5 proteins. The recent characterization of pathogenic genetic variants in DPYSL2 and in DPYSL5 human genes associated with intellectual disability and brain malformations, such as agenesis of the corpus callosum and cerebellar dysplasia, highlighted the pivotal role of these actors in the fundamental processes of brain formation and organization. In this review, we sought to establish a detailed update on the knowledge regarding the functions of DPYSL genes and proteins in brain and to highlight their involvement in synaptic processing in later stages of neurodevelopment, as well as their particular contribution in human neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD) and intellectual disability (ID).
Collapse
Affiliation(s)
| | - Dévina C. Ung
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Patrick Vourc’h
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Médéric Jeanne
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- *Correspondence: Frédéric Laumonnier,
| |
Collapse
|
7
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|