1
|
Canson DM, Llinares-Burguet I, Fortuno C, Sanoguera-Miralles L, Bueno-Martínez E, de la Hoya M, Spurdle AB, Velasco-Sampedro EA. TP53 minigene analysis of 161 sequence changes provides evidence for role of spatial constraint and regulatory elements on variant-induced splicing impact. NPJ Genom Med 2025; 10:37. [PMID: 40341019 PMCID: PMC12062376 DOI: 10.1038/s41525-025-00498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
We investigated the role of TP53 splicing regulatory elements (SREs) using exons 3 and 6 and their downstream introns as models. Minigene microdeletion assays revealed four SRE-rich intervals: c.573_598, c.618_641, c.653_669 and c.672+14_672 + 36. A diagnostically reported deletion c.655_670del, overlapping an SRE-rich interval, induced an in-frame transcript Δ(E6q21) from new donor site usage. Deletion of at least four intron 6 G-runs led to 100% aberrant transcript expression. Additionally, assay results suggested a donor-to-branchpoint distance <50 nt for complete splicing aberration due to spatial constraint, and >75 nt for low risk of splicing abnormality. Overall, splicing data for 134 single nucleotide variants (SNVs) and 27 deletions in TP53 demonstrated that SRE-disrupting SNVs have weak splicing impact (up to 26% exon skipping), while deletions spanning multiple SREs have profound splicing effects. Our findings may prove relevant for identifying novel germline TP53 variants causing hereditary cancer predisposition and/or somatic variants contributing to tumorigenesis.
Collapse
Affiliation(s)
- Daffodil M Canson
- Population Health Program, QIMR Berghofer, Herston, QLD, 4006, Australia
| | - Inés Llinares-Burguet
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer, Herston, QLD, 4006, Australia
| | - Lara Sanoguera-Miralles
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Eladio A Velasco-Sampedro
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain.
| |
Collapse
|
2
|
Xie J, Wang L, Lin RJ. Variations of intronic branchpoint motif: identification and functional implications in splicing and disease. Commun Biol 2023; 6:1142. [PMID: 37949953 PMCID: PMC10638238 DOI: 10.1038/s42003-023-05513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The branchpoint (BP) motif is an essential intronic element for spliceosomal pre-mRNA splicing. In mammals, its sequence composition, distance to the downstream exon, and number of BPs per 3´ splice site are highly variable, unlike the GT/AG dinucleotides at the intron ends. These variations appear to provide evolutionary advantages for fostering alternative splicing, satisfying more diverse cellular contexts, and promoting resilience to genetic changes, thus contributing to an extra layer of complexity for gene regulation. Importantly, variants in the BP motif itself or in genes encoding BP-interacting factors cause human genetic diseases or cancers, highlighting the critical function of BP motif and the need to precisely identify functional BPs for faithful interpretation of their roles in splicing. In this perspective, we will succinctly summarize the major findings related to BP motif variations, discuss the relevant issues/challenges, and provide our insights.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Ren-Jang Lin
- Center for RNA Biology & Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Walker LC, Hoya MDL, Wiggins GAR, Lindy A, Vincent LM, Parsons MT, Canson DM, Bis-Brewer D, Cass A, Tchourbanov A, Zimmermann H, Byrne AB, Pesaran T, Karam R, Harrison SM, Spurdle AB. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup. Am J Hum Genet 2023; 110:1046-1067. [PMID: 37352859 PMCID: PMC10357475 DOI: 10.1016/j.ajhg.2023.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1, PS3, PP3, BS3, BP4, and BP7. However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. We utilized empirically derived splicing evidence to (1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, (2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and (3) exemplify methodology to calibrate splice prediction tools. We propose repurposing the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely, BP7 may be used to capture RNA results demonstrating no splicing impact for intronic and synonymous variants. We propose that the PS3/BS3 codes are applied only for well-established assays that measure functional impact not directly captured by RNA-splicing assays. We recommend the application of PS1 based on similarity of predicted RNA-splicing effects for a variant under assessment in comparison with a known pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA-assay evidence described aim to help standardize variant pathogenicity classification processes when interpreting splicing-based evidence.
Collapse
Affiliation(s)
- Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | | | - Michael T Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daffodil M Canson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | | | | | - Alicia B Byrne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Steven M Harrison
- Ambry Genetics, Aliso Viejo, CA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Canson DM, O’Mara TA, Spurdle AB, Glubb DM. Splicing annotation of endometrial cancer GWAS risk loci reveals potentially causal variants and supports a role for NF1 and SKAP1 as susceptibility genes. HGG ADVANCES 2023; 4:100185. [PMID: 36908940 PMCID: PMC9996439 DOI: 10.1016/j.xhgg.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Alternative splicing contributes to cancer development. Indeed, splicing analysis of cancer genome-wide association study (GWAS) risk variants has revealed likely causal variants. To systematically assess GWAS variants for splicing effects, we developed a prioritization workflow using a combination of splicing prediction tools, alternative transcript isoforms, and splicing quantitative trait locus (sQTL) annotations. Application of this workflow to candidate causal variants from 16 endometrial cancer GWAS risk loci highlighted single-nucleotide polymorphisms (SNPs) that were predicted to upregulate alternative transcripts. For two variants, sQTL data supported the predicted impact on splicing. At the 17q11.2 locus, the protective allele for rs7502834 was associated with increased splicing of an exon in a NF1 alternative transcript encoding a truncated protein in adipose tissue and is consistent with an endometrial cancer transcriptome-wide association study (TWAS) finding in adipose tissue. Notably, NF1 haploinsufficiency is protective for obesity, a well-established risk factor for endometrial cancer. At the 17q21.32 locus, the rs2278868 risk allele was predicted to upregulate a SKAP1 transcript that is subject to nonsense-mediated decay, concordant with a corresponding sQTL in lymphocytes. This is consistent with a TWAS finding that indicates decreased SKAP1 expression in blood increases endometrial cancer risk. As SKAP1 is involved in T cell immune responses, decreased SKAP1 expression may impact endometrial tumor immunosurveillance. In summary, our analysis has identified potentially causal endometrial cancer GWAS risk variants with plausible biological mechanisms and provides a splicing annotation workflow to aid interpretation of other GWAS datasets.
Collapse
Affiliation(s)
- Daffodil M. Canson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Tracy A. O’Mara
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Dylan M. Glubb
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
5
|
Walker LC, de la Hoya M, Wiggins GA, Lindy A, Vincent LM, Parsons M, Canson DM, Bis-Brewer D, Cass A, Tchourbanov A, Zimmermann H, Byrne AB, Pesaran T, Karam R, Harrison SM, Spurdle AB. APPLICATION OF THE ACMG/AMP FRAMEWORK TO CAPTURE EVIDENCE RELEVANT TO PREDICTED AND OBSERVED IMPACT ON SPLICING: RECOMMENDATIONS FROM THE CLINGEN SVI SPLICING SUBGROUP. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.24.23286431. [PMID: 36865205 PMCID: PMC9980257 DOI: 10.1101/2023.02.24.23286431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1 (null variant in a gene where loss-of-function is the mechanism of disease), PS3 (functional assays show damaging effect on splicing), PP3 (computational evidence supports a splicing effect), BS3 (functional assays show no damaging effect on splicing), BP4 (computational evidence suggests no splicing impact), and BP7 (silent change with no predicted impact on splicing). However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation (SVI) Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. Our study utilised empirically derived splicing evidence to: 1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, 2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and 3) exemplify methodology to calibrate bioinformatic splice prediction tools. We propose repurposing of the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely BP7 may be used to capture RNA results demonstrating no impact on splicing for both intronic and synonymous variants, and for missense variants if protein functional impact has been excluded. Furthermore, we propose that the PS3 and BS3 codes are applied only for well-established assays that measure functional impact that is not directly captured by RNA splicing assays. We recommend the application of PS1 based on similarity of predicted RNA splicing effects for a variant under assessment in comparison to a known Pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA assay evidence described aim to help standardise variant pathogenicity classification processes and result in greater consistency when interpreting splicing-based evidence.
Collapse
|
6
|
Blakes AJM, Wai HA, Davies I, Moledina HE, Ruiz A, Thomas T, Bunyan D, Thomas NS, Burren CP, Greenhalgh L, Lees M, Pichini A, Smithson SF, Taylor Tavares AL, O'Donovan P, Douglas AGL, Whiffin N, Baralle D, Lord J. A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project. Genome Med 2022; 14:79. [PMID: 35883178 PMCID: PMC9327385 DOI: 10.1186/s13073-022-01087-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data. METHODS Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify constrained functional variant classes near exon-intron junctions and at putative splicing branchpoints. To identify new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals with de novo single-nucleotide variants near exon-intron boundaries and at putative splicing branchpoints in known disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new molecular diagnoses through clinical variant interpretation and functional RNA studies. RESULTS We show that near-splice positions and splicing branchpoints are highly constrained by purifying selection and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four in whom RNA studies were performed. CONCLUSIONS Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals with unsolved rare diseases.
Collapse
Affiliation(s)
- Alexander J M Blakes
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Htoo A Wai
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Ian Davies
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hassan E Moledina
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - April Ruiz
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Tessy Thomas
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - David Bunyan
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - N Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christine P Burren
- Department of Paediatric Endocrinology and Diabetes, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Lynn Greenhalgh
- Liverpool Centre for Genomic Medicine, Crown Street, Liverpool, UK
| | - Melissa Lees
- North East Thames Regional Genomics Service, Great Ormond Street Hospital, London, UK
| | - Amanda Pichini
- Department of Clinical Genetics, University Hospitals Bristol and Weston Foundation Trust, Bristol, UK
- Genomics England, Dawson Hall, Charterhouse Square, London, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, University Hospitals Bristol and Weston Foundation Trust, Bristol, UK
| | - Ana Lisa Taylor Tavares
- Genomics England, Dawson Hall, Charterhouse Square, London, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Peter O'Donovan
- Genomics England, Dawson Hall, Charterhouse Square, London, UK
| | - Andrew G L Douglas
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nicola Whiffin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Diana Baralle
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Jenny Lord
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK.
| |
Collapse
|
7
|
Robic A, Cerutti C, Demars J, Kühn C. From the comparative study of a circRNA originating from an mammalian ATXN2L intron to understanding the genesis of intron lariat-derived circRNAs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194815. [PMID: 35513260 DOI: 10.1016/j.bbagrm.2022.194815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Circular intronic RNAs (ciRNAs) are still unexplored regarding mechanisms for their emergence. We considered the ATXN2L intron lariat-derived circular RNA (ciRNA-ATXN2L) as an opportunity to conduct a cross-species examination of ciRNA genesis. To this end, we investigated 207 datasets from 4 tissues and from 13 mammalian species. While in eight species, ciRNA-ATXN2L was never detected, in pigs and rabbits, ciRNA-ATXN2L was expressed in all tissues and sometimes at very high levels. Bovine tissues were an intermediate case and in macaques and cats, only ciRNA-ATXN2L traces were detected. The pattern of ciRNA-ATXN2L restricted to only five species is not related to a particular evolution of intronic sequences. To empower our analysis, we considered 221 additional introns including 80 introns where a lariat-derived ciRNA was previously described. The primary driver of micro-ciRNA genesis (< 155 nt as ciRNA-ATXN2L) appears to be the absence of a canonical "A" (i.e. a "tnA" located in the usual branching region) to build the lariat around this adenosine. The balance between available "non canonical-A" (no ciRNA genesis) and "non-A" (ciRNA genesis) for use as a branch point to build the lariat could modify the expression level of ciRNA-ATXN2L. In addition, the rare localization of the 2'-5' bond in an open RNA secondary structure could also negatively affect the lifetime of ciRNAs (macaque ciRNA-ATXN2L). Our analyses suggest that ciRNA-ATXN2L is likely a functionless splice remnant. This study provides a better understanding of the ciRNAs origin, especially drivers for micro ciRNA genesis.
Collapse
Affiliation(s)
- Annie Robic
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
| | - Chloé Cerutti
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|