2
|
Goh ESY, Chad L, Richer J, Bombard Y, Mighton C, Agatep R, Lacaria M, Penny B, Thomas MA, Zawati MH, MacFarlane J, Laberge AM, Nelson TN. Canadian College of Medical Geneticists: clinical practice advisory document - responsibility to recontact for reinterpretation of clinical genetic testing. J Med Genet 2024; 61:1123-1131. [PMID: 39362754 PMCID: PMC11672037 DOI: 10.1136/jmg-2024-110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Advances in technology and knowledge have facilitated both an increase in the number of patient variants reported and variants reclassified. While there is currently no duty to recontact for reclassified genetic variants, there may be a responsibility. The purpose of this clinical practice advisory document is to provide healthcare practitioners guidance for recontact of previously identified and classified variants, suggest methods for recontact, and principles to consider, taking account patient safety, feasibility, ethical considerations, health service capacity and resource constraints. The target audience are practitioners who order genetic testing, follow patients who have undergone genetic testing and those analysing and reporting genetic testing. METHODS A multidisciplinary group of laboratory and ordering clinicians, patient representatives, ethics and legal researchers and a genetic counsellor from the Canadian Association of Genetic Counsellors reviewed the existing literature and guidelines on responsibility to recontact in a clinical context to make recommendations. Comments were collected from the Canadian College of Medical Geneticists (CCMG) Education, Ethics, and Public Policy, Clinical Practice and Laboratory Practice committees, and the membership at large. RESULTS Following incorporation of feedback, and external review by the Canadian Association of Genetic Counsellors and patient groups, the document was approved by the CCMG Board of Directors. The CCMG is the Canadian organisation responsible for certifying laboratory and medical geneticists who provide medical genetics services, and for establishing professional and ethical standards for clinical genetics services in Canada. CONCLUSION The document describes the ethical and practical factors and suggests a shared responsibility between patients, ordering clinician and laboratory practitioners.
Collapse
Affiliation(s)
- Elaine Suk-Ying Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Chad
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie Richer
- Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Ron Agatep
- Genomics, Shared Health Diagnostic Services, Winnipeg, Manitoba, Canada
| | - Melanie Lacaria
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Mary Ann Thomas
- Departments of Medical Genetics and Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Ma'n H Zawati
- Human Genetics, Centre of Genomics and Policy - McGill University, Montreal, Quebec, Canada
| | - Julie MacFarlane
- Screening Programs, Perinatal Services BC, Vancouver, British Columbia, Canada
| | - Anne-Marie Laberge
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Tanya N Nelson
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Ravel JM, Renaud M, Muller J, Becker A, Renard É, Remen T, Lefort G, Dexheimer M, Jonveaux P, Leheup B, Bonnet C, Lambert L. Clinical utility of periodic reinterpretation of CNVs of uncertain significance: an 8-year retrospective study. Genome Med 2023; 15:39. [PMID: 37221613 DOI: 10.1186/s13073-023-01191-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Array-CGH is the first-tier genetic test both in pre- and postnatal developmental disorders worldwide. Variants of uncertain significance (VUS) represent around 10~15% of reported copy number variants (CNVs). Even though VUS reanalysis has become usual in practice, no long-term study regarding CNV reinterpretation has been reported. METHODS This retrospective study examined 1641 CGH arrays performed over 8 years (2010-2017) to demonstrate the contribution of periodically re-analyzing CNVs of uncertain significance. CNVs were classified using AnnotSV on the one hand and manually curated on the other hand. The classification was based on the 2020 American College of Medical Genetics (ACMG) criteria. RESULTS Of the 1641 array-CGH analyzed, 259 (15.7%) showed at least one CNV initially reported as of uncertain significance. After reinterpretation, 106 of the 259 patients (40.9%) changed categories, and 12 of 259 (4.6%) had a VUS reclassified to likely pathogenic or pathogenic. Six were predisposing factors for neurodevelopmental disorder/autism spectrum disorder (ASD). CNV type (gain or loss) does not seem to impact the reclassification rate, unlike the length of the CNV: 75% of CNVs downgraded to benign or likely benign are less than 500 kb in size. CONCLUSIONS This study's high rate of reinterpretation suggests that CNV interpretation has rapidly evolved since 2010, thanks to the continuous enrichment of available databases. The reinterpreted CNV explained the phenotype for ten patients, leading to optimal genetic counseling. These findings suggest that CNVs should be reinterpreted at least every 2 years.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Service de génétique médicale, CHRU de Nancy, Nancy, France
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France
| | - Mathilde Renaud
- Service de génétique médicale, CHRU de Nancy, Nancy, France
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France
| | - Jean Muller
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de Médecine de Strasbourg, 67000, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Aurélie Becker
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Émeline Renard
- Department of pediatrics, Regional University Hospital of Nancy, Allée du Morvan, 54511, Vandoeuvre-Lès-Nancy, France
| | | | | | | | | | - Bruno Leheup
- Service de génétique médicale, CHRU de Nancy, Nancy, France
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France
| | - Céline Bonnet
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France.
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France.
| | - Laëtitia Lambert
- Service de génétique médicale, CHRU de Nancy, Nancy, France.
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France.
| |
Collapse
|
6
|
Denommé-Pichon AS, Matalonga L, de Boer E, Jackson A, Benetti E, Banka S, Bruel AL, Ciolfi A, Clayton-Smith J, Dallapiccola B, Duffourd Y, Ellwanger K, Fallerini C, Gilissen C, Graessner H, Haack TB, Havlovicova M, Hoischen A, Jean-Marçais N, Kleefstra T, López-Martín E, Macek M, Mencarelli MA, Moutton S, Pfundt R, Pizzi S, Posada M, Radio FC, Renieri A, Rooryck C, Ryba L, Safraou H, Schwarz M, Tartaglia M, Thauvin-Robinet C, Thevenon J, Tran Mau-Them F, Trimouille A, Votypka P, de Vries BBA, Willemsen MH, Zurek B, Verloes A, Philippe C, Vitobello A, Vissers LELM, Faivre L. A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing. Genet Med 2023; 25:100018. [PMID: 36681873 DOI: 10.1016/j.gim.2023.100018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.
Collapse
Affiliation(s)
- Anne-Sophie Denommé-Pichon
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France.
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation," The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Elisa Benetti
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Ange-Line Bruel
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Yannis Duffourd
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Kornelia Ellwanger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Chiara Fallerini
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Christian Gilissen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radbound University, Nijmegen, The Netherlands
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Marketa Havlovicova
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Alexander Hoischen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radbound University, Nijmegen, The Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Nolwenn Jean-Marçais
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands; Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Estrella López-Martín
- Institute of Rare Diseases Research, Spanish Undiagnosed Rare Diseases Cases Program (SpainUDP) & Undiagnosed Diseases Network International, Instituto de Salud Carlos III, Madrid, Spain
| | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Sébastien Moutton
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Manuel Posada
- Institute of Rare Diseases Research, Spanish Undiagnosed Rare Diseases Cases Program (SpainUDP) & Undiagnosed Diseases Network International, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alessandra Renieri
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy; Medical Genetics, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Caroline Rooryck
- MRGM INSERM U1211, University of Bordeaux, Medical Genetics Department, Bordeaux University Hospital, Bordeaux, France
| | - Lukas Ryba
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Hana Safraou
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Martin Schwarz
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Christel Thauvin-Robinet
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Julien Thevenon
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Frédéric Tran Mau-Them
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Aurélien Trimouille
- Molecular Genetics Laboratory, Medical Genetics Department, Bordeaux University Hospital - Hôpital Pellegrin, Bordeaux, France
| | - Pavel Votypka
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Bert B A de Vries
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Birte Zurek
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Alain Verloes
- Department of Genetics, Assistance Publique-Hôpitaux de Paris - Université de Paris, Paris, France; INSERM UMR 1141 "NeuroDiderot," Hôpital Robert Debré, Paris, France
| | - Christophe Philippe
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Antonio Vitobello
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Laurence Faivre
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France.
| |
Collapse
|