1
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025; 54:4468-4501. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
2
|
Lesko I, Sengmany S, Beltran R, Le Gall E, Léonel E. Transition Metal-Free Direct Electrochemical Carboxylation of Organic Halides Using a Sacrificial Magnesium Anode: Straightforward Synthesis of Carboxylic Acids. ChemistryOpen 2025:e202400426. [PMID: 39876650 DOI: 10.1002/open.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO2 is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable. Mechanistic investigation account for the in situ generation of a carbanionic species that is not a simple organomagnesium halide.
Collapse
Affiliation(s)
- Iryna Lesko
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Stéphane Sengmany
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | | | - Erwan Le Gall
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Eric Léonel
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| |
Collapse
|
3
|
Yang D, Sun Y, Feng N, Zhong Y, Zhou J, Zhou F. Electrochemical Dicarboxylation of Vinyl Epoxide with CO 2 for the Facile and Selective Synthesis of Diacids. Angew Chem Int Ed Engl 2025; 64:e202419702. [PMID: 39731400 DOI: 10.1002/anie.202419702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 12/29/2024]
Abstract
We present a novel electrochemical dicarboxylation of epoxides with CO2, characterized by the cleavage of two C-O single bonds. Not only are vinyl epoxides viable, but cyclic carbonates also serve as effective substrates, facilitating the synthesis of E-configured adipic and octanedioic acids with high chemo-, regio-, and stereoselectivity. The synthetic practicality is further highlighted by the diverse functionalizations of the resulting multifunctional diacids. Mechanistic studies support the single-electron transfer reduction of CO2 to its radical anion, which undergoes radical addition to the vinyl moiety of epoxides. The subsequent reductive cleavage of two C-O bonds, coupled with a nucleophilic attack on CO2, culminates in the formation of the desired diacid products.
Collapse
Affiliation(s)
- Deyong Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ying Sun
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Nan Feng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuqing Zhong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004, China
| | - Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
4
|
Debbarma S, Hayashi H, Ueno Y, Kanna W, Tanaka K, Mita T. Photoredox-Catalyst-Free Carboxylation of Unactivated Alkenes in DMSO: Synthesis of Polycyclic Indole Derivatives and Aliphatic Acids. Org Lett 2024; 26:10897-10902. [PMID: 39642036 DOI: 10.1021/acs.orglett.4c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A new method for the carboxylation of unactivated alkenes using CO2 radical anions in the absence of a photoredox catalyst has been developed. The photocatalyst-free approach enables the efficient synthesis of polycyclic indole derivatives and linear carboxylic acids under mild conditions from HCO2K with/without 1,4-diazabicyclo[2.2.2]octane (DABCO) in DMSO. This work demonstrates a significant advance in green chemistry, showcasing a catalyst-free approach for the functionalization of unactivated alkenes with cheap and readily available HCO2K.
Collapse
Affiliation(s)
- Suvankar Debbarma
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yamato Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosaku Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
5
|
Li P, Wang Y, Zhao H, Qiu Y. Electroreductive Cross-Coupling Reactions: Carboxylation, Deuteration, and Alkylation. Acc Chem Res 2024. [PMID: 39670841 DOI: 10.1021/acs.accounts.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ConspectusElectrochemistry has been used as a tool to drive chemical reactions for more than two centuries. With the help of an electrode and a power source, chemists are provided with a system whose potential can be precisely dialed in. The theoretically infinite redox range renders electrochemistry capable of oxidizing or reducing some of the most tenacious compounds. Indeed, electroreduction offers an alternative to generating highly active intermediates from electrophiles (e.g., halides, alkenes, etc.) in organic synthesis, which can be untouchable with traditional reduction methods. Meanwhile, the reductive coupling reactions are extensively utilized in both industrial and academic settings due to their ability to swiftly, accurately, and effectively construct C-C and C-X bonds, which present innovative approaches for synthesizing complex molecules. Nonetheless, its application is constrained by several inherent limitations: (a) the requirement for stoichiometric quantities of reducing agents, (b) scarce activation strategies for inert substrates with high reduction potentials, (c) incomplete mechanistic elucidation, and (d) challenges in the isolation of intermediates. The merging of electrochemistry and reductive coupling represents an attractive approach to address the above limitations in organic synthesis and has seen increasing use in the synthetic community over the past few years.Since 2020, our group has been dedicated to developing electroreductive cross-coupling reactions using readily available organic substrates with small molecules, such as organic halides, alkenes, arenes, CO2, and D2O, to construct high value-added organic products. Electroreductive chemistry is highly versatile and offers powerful reducing capacity and precise selectivity control, which has allowed us to develop three electrochemical modes in our lab: (1) An economically advantageous electrochemical direct reduction (EDR) strategy that emphasizes efficiency, achieves high atom utilization, and minimizes unnecessary atomic waste. (2) A class of electrochemical organo-mediated reduction (EOMR) methods that are capable of effectively controlling reaction intermediates and reaction pathways. This allows for precise modulation of reaction processes to enhance efficiency and selectivity. (3) The electrochemical metal-catalyzed reduction (EMCR) method that enables selective activation and functionalization of specific chemical bonds or functional groups under mild conditions, thereby reducing the occurrence of side reactions. We commenced our studies by establishing an organic-mediator-promoted electroreductive carboxylation of aryl and alkyl halides. This strategy was then employed for the arylcarboxylation of simple styrenes with aryl halides in a highly selective manner. Meanwhile, under direct electrolysis conditions, the carboxylation of arenes and epoxides with CO2 as the carboxyl source was achieved. Moreover, through the precise adjustment of the electroreductive conditions, we successfully accomplished the electroreductive deuteration of arenes, olefins, and unactivated alkyl halides, enabling the efficient and selective formation of D-labeled products. Finally, building on our previous understanding of alkyl halides, we developed a series of electrochemical alkylation reactions that enable the efficient formation of C(sp3)-C(sp3) bonds using alkyl halides.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanwei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Youai Qiu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Kongkiatkrai P, Anusanti T, Chantarojsiri T. Repurposing First-Row Transition Metal Carbon Dioxide Reduction Electrocatalysts for Electrochemical Carboxylation of Benzyl Chloride. ACS ORGANIC & INORGANIC AU 2024; 4:620-627. [PMID: 39649989 PMCID: PMC11621952 DOI: 10.1021/acsorginorgau.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024]
Abstract
Carbon dioxide (CO2) is an abundant and useful C1 feedstock for electrocarboxylation, a process that incorporates a carboxyl moiety into an organic molecule. In this work, three first-row transition metal CO2 reduction electrocatalysts, NiPDIiPr (1), NiTPA (2), and Fe(salenCl4) (3), were explored as electrocarboxylation catalysts with benzyl chloride as a substrate. The cyclic voltammograms of all three catalysts showed current enhancements in the presence of benzyl chloride under a CO2 atmosphere. Introduction of DMAP as additives showed further current enhancement. Electrolyses with one-compartment cell generated a moderate yield of phenylacetic acid. Addition of MgBr2 was proven to be crucial to the formation of the carboxylate product. While the yield of carboxylation was moderate, this work showed an example of electrocarboxylation of benzyl chloride without using a metal electrode or sacrificial anode, which could lead to a more sustainable carboxylation methodology.
Collapse
Affiliation(s)
- Pornwimon Kongkiatkrai
- Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thana Anusanti
- Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
7
|
Li N, Peng ZN, Xiong R, Wang AC, Dong ZB. Visible-light induced decarboxylative coupling of phenoxyacetic acid with disulfides: synthesis of α-arylthioanisole derivatives. Chem Commun (Camb) 2024; 60:12004-12007. [PMID: 39355901 DOI: 10.1039/d4cc03718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Photoredox-catalyzed cross-coupling reaction is an efficient strategy for the construction of organic molecules. Herein, we developed a method to synthesize α-arylthioanisoles by constructing C-S bonds in the presence of a Ru-photoredox catalyst. Thus, a series of α-arylthioanisole compounds were efficiently obtained through decarboxylative cross-coupling under mild conditions. This protocol features high efficiency, broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Ning Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhao-Nian Peng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Run Xiong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Ao-Cheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Sun GQ, Liao LL, Ran CK, Ye JH, Yu DG. Recent Advances in Electrochemical Carboxylation with CO 2. Acc Chem Res 2024; 57:2728-2745. [PMID: 39226463 DOI: 10.1021/acs.accounts.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ConspectusCarbon dioxide (CO2) is recognized as a greenhouse gas and a common waste product. Simultaneously, it serves as an advantageous and commercially available C1 building block to generate valuable chemicals. Particularly, carboxylation with CO2 is considered a significant method for the direct and sustainable production of important carboxylic acids. However, the utilization of CO2 is challenging owing to its thermodynamic stability and kinetic inertness. Recently, organic electrosynthesis has emerged as a promising approach that utilizes electrons or holes as environmentally friendly redox reagents to produce reactive intermediates in a controlled and selective manner. This technique holds great potential for the CO2 utilization.Since 2015, our group has been dedicated to exploring the utilization of CO2 in organic synthesis with a particular focus on electrochemical carboxylation. Despite the significant advancements made in this area, there are still many challenges, including the activation of inert substrates, regulation of selectivity, diversity in electrolysis modes, and activation strategies. Over the past 7 years, our team, with many great experts, has presented findings on electrochemical carboxylation with CO2 under mild conditions. In this context, we primarily highlight our contributions to selective electrocarboxylations, encompassing new reaction systems, selectivity control methods, and activation approaches.We commenced our research by establishing a Ni-catalyzed electrochemical carboxylation of unactivated aryl halides and alkyl bromides in conjunction with a useful paired anodic reaction. This approach eliminates the need for sacrificial anodes, rendering the carboxylation process sustainable. To further utilize the widely existing yet cost-effective alkyl chlorides, we have developed a deep electroreductive system to achieve carboxylation of unactivated alkyl chlorides and poly(vinyl chloride), allowing the direct modification and upgrading of waste polymers.Through precise adjustment of the electroreductive conditions, we successfully demonstrated the dicarboxylation of both strained carbocycles and acyclic polyarylethanes with CO2 via C-C bond cleavage. Furthermore, we have realized the dicarboxylative cyclization of unactivated skipped dienes to produce the valuable ring-tethered adipic acids through single-electron reduction of CO2 to the CO2 radical anion (CO2•-). In terms of the asymmetric carboxylation, Guo's and our groups have recently achieved the nickel-catalyzed enantioselective electroreductive carboxylation reaction using racemic propargylic carbonates and CO2, paving the way for the synthesis of enantioenriched propargylic carboxylic acids.In addition to the aforementioned advancements, Lin's and our groups have also developed new electrolysis modes to achieve regiodivergent C-H carboxylation of N-heteroarenes dictated by electrochemical reactors. The choice of reactors plays a crucial role in determining whether the hydrogen atom transfer (HAT) reagents are formed anodically, consequently influencing the carboxylation pathways of N-heteroarene radical anions in the distinct electrolyzed environments.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
9
|
Hu DD, Guo RT, Yan JS, Guo SH, Pan WG. Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO 2) to hydrocarbon fuels. NANOSCALE 2024; 16:2185-2219. [PMID: 38226715 DOI: 10.1039/d3nr05664c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
MOF-based photoelectrocatalysis (PEC) using CO2 as an electron donor offers a green, clean, and extensible way to make hydrocarbon fuels under more tolerant conditions. Herein, basic principles of PEC reduction of CO2 and the preparation methods and characterization techniques of MOF-based materials are summarized. Furthermore, three applications of MOFs for improving the photoelectrocatalytic performance of CO2 reduction are described: (i) as photoelectrode alone; (ii) as a co-catalyst of semiconductor photoelectrode or as a substrate for loading dyes, quantum dots, and other co-catalysts; (iii) as one of the components of heterojunction structure. Challenges and future wave surrounding the development of robust PEC CO2 systems based on MOF materials are also discussed briefly.
Collapse
Affiliation(s)
- Dou-Dou Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China.
| | - Ji-Song Yan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Sheng-Hui Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China.
| |
Collapse
|
10
|
Qin JH, Xiong ZQ, Cheng C, Hu M, Li JH. Electroreductive Carboxylation of Propargylic Acetates with CO 2: Access to Tetrasubstituted 2,3-Allenoates. Org Lett 2023; 25:9176-9180. [PMID: 38113454 DOI: 10.1021/acs.orglett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An electroreductive carboxylation of propargylic alcohols with CO2 and then workup with TMSCHN2 to construct tetrasubstituted 2,3-allenoates is developed. This method allows the incorporation of an external ester group into the resulting allene system through electroreduction, carboxylation, and deacetoxylation cascades. Mechanistically, electricity on/off experiments and cyclic voltammetry analysis support the preferential generation of the CO2 radical anion or the 3-aryl propargylic acetate radical anion based on the electron nature of the aryl rings.
Collapse
Affiliation(s)
- Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chaozhihui Cheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
11
|
Sun L, Nie P, Luan L, Herdewijn P, Wang YT. Synthetic approaches and application of clinically approved small-molecule Anti-HIV drugs: An update. Eur J Med Chem 2023; 261:115847. [PMID: 37801826 DOI: 10.1016/j.ejmech.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Application of chemotherapeutic agents to inhibit the HIV replication process has brought about a significant metamorphosis in the landscape of AIDS. Substantial declines in morbidity and mortality rates have been attained, accompanied by notable decreases in healthcare resource utilization. However, treatment modalities do not uniformly inhibit HIV replication in every patient, while the emergence of drug-resistant viral strains poses a substantial obstacle to subsequent therapeutic interventions. Furthermore, chronic administration of therapy may lead to the manifestation of toxicities. These challenges necessitate the exploration of novel pharmacological agents and innovative therapeutic approaches aimed at effectively managing the persistent viral replication characteristic of chronic infection. This review examines the role of clinically approved small-molecule drugs in the treatment of HIV/AIDS, which provides an in-depth analysis of the major classes of small-molecule drugs, including nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase inhibitors, entry inhibitors, and pharmacokinetic enhancers. The review mainly discusses the application, synthetic routes, and mechanisms of action of small-molecule drugs employed in the treatment of HIV, as well as their use in combination with antiretroviral therapy, presenting viewpoints on forthcoming avenues in the development of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Lu Sun
- Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China
| | - Peng Nie
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Li Luan
- Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China.
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Huang W, Wang S, Li M, Zhao L, Peng M, Kang C, Jiang G, Ji F. Electrochemical N-Acylation of Sulfoximine with Hydroxamic Acid. J Org Chem 2023. [PMID: 38018775 DOI: 10.1021/acs.joc.3c01903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the widespread applications of sulfoximines, green and efficient access to functionalized sulfoximines remains a challenge. By employing an electrochemical strategy, we describe an approach for the construction of N-aroylsulfoximines, which features a broad substrate scope, mild reaction conditions, safety on a gram scale, and no need for an external oxidant and transition metal catalysts.
Collapse
Affiliation(s)
- Wenxiu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mingzhe Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Longqiang Zhao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mengyu Peng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Chen Kang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
13
|
Yu J, Liu T, Sun W, Zhang Y. Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes. Org Lett 2023; 25:7816-7821. [PMID: 37870311 DOI: 10.1021/acs.orglett.3c02997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An electrochemical strategy for the decarboxylative elimination of carboxylic acids to alkenes at room temperature has been developed. This mild and oxidant-free method provides a green alternative to traditional thermal decarboxylation reactions. Structurally diverse aliphatic carboxylic acids, including biologically active drugs, underwent smooth conversion to the corresponding alkenes in good to excellent yields.
Collapse
Affiliation(s)
- Jiage Yu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Teng Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Wanhao Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100871, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
14
|
Zhao W, Lu Y, Qiao Y, Yin X, Liu C, Fang Z, Zhu J, Guo K. Electrosynthesis of Spiro-indolenines via Dearomative Arylation of Indoles in Batch and Continuous Flow. Org Lett 2023; 25:7451-7456. [PMID: 37791903 DOI: 10.1021/acs.orglett.3c03149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An electrosynthesis of spiro-indolenines in batch and continuous flow was achieved through dearomative arylation of indoles with good functional group compatibility. User-friendly undivided cells were used under catalyst- and oxidant-free conditions. Moreover, the use of a flow electrolysis cell gave high daily productivity and excellent scale-up potential under less supporting electrolyte and higher substrate concentration conditions.
Collapse
Affiliation(s)
- Wei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaqi Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xing Yin
- Intervention Therapy Department, General Hospital of Eastern Theater Command, Nanjing 222042, China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianliang Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Zhang X, Li Z, Chen H, Shen C, Wu H, Dong K. Pairing Electrocarboxylation of Unsaturated Bonds with Oxidative Transformation of Alcohol and Amine. CHEMSUSCHEM 2023; 16:e202300807. [PMID: 37366066 DOI: 10.1002/cssc.202300807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
A parallel paired electrosynthetic method, coupling electrocarboxylation incorporating CO2 into ketone, imine, and alkene with alcohol oxidation or oxidative cyanation of amine, was developed for the first time. Various carboxylic acids as well as aldehyde/ketone or α-nitrile amine were prepared at the cathode and anode respectively in a divided cell. Its utility and merits on simultaneously achieving high atom-economic CO2 utilization, elevated faradaic efficiency (FE, total FE of up to 166 %), and broad substrate scope were demonstrated. The preparation of pharmaceutical intermediates for Naproxen and Ibuprofen via this approach proved its potential application in green organic electrosynthesis.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zonghan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Hongshuai Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
16
|
Liu C, Yu J, Bao L, Zhang G, Zou X, Zheng B, Li Y, Zhang Y. Electricity-Promoted Friedel-Crafts Acylation of Biarylcarboxylic Acids. J Org Chem 2023; 88:3794-3801. [PMID: 36861957 DOI: 10.1021/acs.joc.2c03071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
An electricity-promoted method for Friedel-Crafts acylation of biarylcarboxylic acids is described in this research. Various fluorenones can be accessed in up to 99% yields. During the acylation, electricity plays an essential role, which might motivate the chemical equilibrium by consuming the generated TFA. This study is predicted to provide an avenue to realize Friedel-Crafts acylation in a more environmentally friendly process.
Collapse
Affiliation(s)
- Chen Liu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jiage Yu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Liang Bao
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Gaoyuan Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Xinyue Zou
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bing Zheng
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yiyi Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yunfei Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
17
|
Ling H, Miao H, Cao Z, Mascal M. Electrochemical Incorporation of Electrophiles into the Biomass-Derived Platform Molecule 5-(Chloromethyl)furfural. CHEMSUSCHEM 2023; 16:e202201787. [PMID: 36525531 DOI: 10.1002/cssc.202201787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The 5-(chloromethyl)furfural (CMF) derivative ethyl 5-(chloromethyl)furan-2-carboxylate undergoes two-electron electrochemical reduction in a simple, undivided cell to give the corresponding furylogous enolate anion, which can either be quenched with carbon dioxide to give a 5-(carboxymethyl)furan-2-carboxylate or with hydrogen ion to give a 5-methylfuran-2-carboxylate, thereby expanding the derivative scope of CMF as a biobased platform molecule.
Collapse
Affiliation(s)
- Huitao Ling
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Haoqian Miao
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Zhiling Cao
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Mark Mascal
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
18
|
Mangaonkar SR, Hayashi H, Takano H, Kanna W, Maeda S, Mita T. Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO 2 Radical Anion to (Hetero)Aromatics. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Saeesh R. Mangaonkar
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
19
|
Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Site-Selective Electrochemical C-H Carboxylation of Arenes with CO 2. Angew Chem Int Ed Engl 2023; 62:e202214710. [PMID: 36382417 DOI: 10.1002/anie.202214710] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Herein, a direct, metal-free, and site-selective electrochemical C-H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C-H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C-H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
20
|
Wei W, Zhan L, Gao L, Huang G, Ma X. Research Progress of Electrochemical Synthesis of C-Sulfonyl Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
22
|
Chantarojsiri T, Soisuwan T, Kongkiatkrai P. Toward green syntheses of carboxylates: Considerations of mechanisms and reactions at the electrodes for electrocarboxylation of organohalides and alkenes. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Metal, iodine and oxidant-free electrosynthesis of substituted indoles from 1-(2-aminophenyl)alcohols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Guan A, Quan Y, Chen Y, Liu Z, Zhang J, Kan M, Zhang Q, Huang H, Qian L, Zhang L, Zheng G. Efficient CO2 fixation with acetophenone on Ag-CeO2 electrocatalyst by a double activation strategy. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
TBAI/H2O-cooperative electrocatalytic decarboxylation coupling-annulation of quinoxalin-2(1H)-ones with N-arylglycines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Liu XF, Zhang K, Wang LL, Wang H, Huang J, Zhang XT, Lu XB, Zhang WZ. Electroreductive Ring-Opening Carboxylation of Cycloketone Oxime Esters with Carbon Dioxide. J Org Chem 2022; 88:5212-5219. [PMID: 36273332 DOI: 10.1021/acs.joc.2c01816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electroreductive ring-opening carboxylation of cycloketone oxime esters with atmospheric carbon dioxide is reported. This reaction proceeded under simple constant current conditions in an undivided cell using glassy carbon as the cathode and magnesium as the sacrificial anode, providing substituted γ- and δ-cyanocarboxylic acids in moderate to good yields. Electrochemically generated cyanoalkyl radicals and cyanoalkyl anion are proposed as the key intermediates.
Collapse
Affiliation(s)
- Xiao-Fei Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Ke Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Lin-Lin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - He Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jian Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xun-Ting Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
27
|
Chen J, Zhang R, Ma C, Zhang P, Zhang Y, Wang B, Xue F, Jin W, Xia Y, Liu C. Sustainable electrochemical dearomatization for the synthesis of diverse 2, 3-functionalized indolines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Yang ZX, Lai L, Chen J, Yan H, Ye KY, Chen FE. Stereoselective electrochemical carboxylation of α,β-unsaturated sulfones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO
2
for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207746. [DOI: 10.1002/anie.202207746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
30
|
Chen Z, Tang W, Yang S, Yang L. Electrochemical synthesis of 3-halogenated spiro [4,5]trienones based on dearomative spirocyclization strategy. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Nandi S, Jana R. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shantanu Nandi
- Indian Institute of Chemical Biology CSIR Organic and Medicinal Chemistry Division 4 Raja S C Mullick RoadJadavpur 700032 Kolkata INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR Chemistry Division 4, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
32
|
Wan L, Kong G, Liu M, Jiang M, Cheng D, Chen F. Flow chemistry in the multi-step synthesis of natural products. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
33
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO2 for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | | | | | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
34
|
Wang S, Feng T, Wang Y, Qiu Y. Recent Advances in Electrocarboxylation with CO2. Chem Asian J 2022; 17:e202200543. [DOI: 10.1002/asia.202200543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Siyi Wang
- China University of Mining and Technology School of Chemical Engineering & Technology CHINA
| | - Tian Feng
- Nankai University College of Chemistry CHINA
| | - Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
35
|
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem 2022; 236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
36
|
He WB, Zhao SJ, Chen JY, Jiang J, Chen X, Xu X, He WM. External electrolyte-free electrochemical one-pot cascade synthesis of 4-thiocyanato-1H-pyrazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Wang H, Li Y, Liu S, Makha M, Bai JF, Li Y. CO 2 -Promoted Direct Acylation of Amines and Phenols by the Activation of Inert Thioacid Salts. CHEMSUSCHEM 2022; 15:e202200227. [PMID: 35289483 DOI: 10.1002/cssc.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Herein a carbon dioxide-promoted synthetic approach for the direct amidation between unactivated thioacid salts and amines under mild conditions was developed for a wide range of substrates. The method afforded amides in good to excellent yields under transition-metal-free and activation-reagent-free conditions, in sharp contrast to early methodologies on amide synthesis based on transition-metal catalysis. The method offered a greener and transition metal-free protocol applicable to pharmaceuticals preparations. Phenolic compounds were also found to be suitable acylation substrates with potassium thiosulfide KHS as the only byproduct. Moreover, this approach was applied to amide synthesis of valuable bio-active molecules such as moclobemide, melatonin, and a fungicide. Insights into the reaction mechanism involving carbon dioxide were provided through NMR spectroscopy and computational calculations. A plausible mechanism was proposed that involves weak interactions between carbon dioxide and potassium thioacetate in a dynamic equilibrium state formation of a six-membered ring.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yudong Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Shaoli Liu
- College of Chemistry and Chemical Engineering Yantai University, Yantai, 264005, P. R. China
| | - Mohamed Makha
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jian-Fei Bai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
38
|
Structure-Based Design of [(2-Hydroxyethoxy)methyl]-6-(phenylthio)-thymine Derivatives as Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors: from HEPTs to Sulfinyl-substituted HEPTs. Bioorg Chem 2022; 126:105880. [DOI: 10.1016/j.bioorg.2022.105880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
|
39
|
Yu Y, Jiang Y, Wu S, Shi Z, Wu J, Yuan Y, Ye K. Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Zhang S, Xu G, Yan H, Wu Q, Meng J, Duan J, Guo K. Electrooxidative [3 + 2] annulation of amidines with alkenes for the synthesis of spiroimidazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Chen P, Tang X, Meng X, Tang H, Pan Y, Liang Y. Transition metal-free catalytic formylation of carbon dioxide and amide with novel poly(ionic liquid)s. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
43
|
Electrochemical regioselective synthesis of N-substituted/unsubstituted 4-selanylisoquinolin-1(2H)-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Murtaza A, Qamar MA, Saleem K, Hardwick T, Zia Ul Haq, Shirinfar B, Ahmed N. Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. CHEM REC 2022; 22:e202100296. [PMID: 35103382 DOI: 10.1002/tcr.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Awais Qamar
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kaynat Saleem
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zia Ul Haq
- Chemical Engineering department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
45
|
Yang F, Nie YC, Liu HY, Zhang L, Mo F, Zhu R. Electrocatalytic Oxidative Hydrofunctionalization Reactions of Alkenes via Co(II/III/IV) Cycle. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi-Chen Nie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han-Yuan Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Chen P, Xiong T, Liang Y, Pan Y. Recent progress on N‐heterocyclic carbene catalysts in chemical fixation of CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peibo Chen
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Tingkai Xiong
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Ying Liang
- Guilin University of Electronic Technology School of Life and Environmental Sciences Guilin, 541004, People’s Republic of China. 541004 Guilin CHINA
| | - Yingming Pan
- Guangxi Normal University School of Chemistry and Molecular Engineering of Medicinal Resources CHINA
| |
Collapse
|
47
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
48
|
Yu Y, Jiang YM, Zhu XB, Lin YY, Yuan Y, Ye KY. Electrochemical β-chlorosulfoxidation of alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo01111e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and sustainable electrochemical β-chlorosulfoxidation of alkenes with readily available thiols and hydrochloride as the limiting agents has been developed.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Min Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Bin Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yong-Ying Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
49
|
Mu S, Li H, Wu Z, Peng J, Chen J, He W. Electrocatalytic Three-Component Synthesis of 4-Bromopyrazoles from Acetylacetone, Hydrazine and Diethyl Bromomalonate. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202211002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Zhao YJ, Yang LR, Wang LT, Wang Y, Lu JX, Wang H. Asymmetric electrocarboxylation of 4′-methylacetophenone over PrCoO 3 perovskites. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00116k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Asymmetric electrocarboxylation of aromatic ketones has been achieved over PrCoO3 perovskites with the help of chiral auxiliary t-Bu(R,R)salen(Co[ii]) under CO2 atmosphere.
Collapse
Affiliation(s)
- Yi-Jun Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Li-Rong Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Le-Ting Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jia-Xing Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Huan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|