1
|
Akulov AA, Silaeva AI, Varaksin MV, Butorin II, Lyapustin DN, Drokin RA, Kotovskaya SK, Zaykovskaya AV, Pyankov OV, Rusinov VL, Charushin VN, Chupakhin ON. Azolopyrimidine-Based Thioethers: Synthesis via Cross-Dehydrogenative C-S Coupling and In Silico Evaluation of Anti-SARS-CoV-2 Activity. Chempluschem 2025; 90:e202400594. [PMID: 39607271 DOI: 10.1002/cplu.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Azoloazine derivatives are known as promising small molecules that are potentially able to counteract a broad spectrum of RNA viruses including SARS-CoV-2. However, a pool of synthetic pathways to provide convenient structural modification of such compounds without de novo construction of the heterocyclic scaffold is rather limited so far. This work proposes an approach to the direct C(sp2)-H functionalization of azolopyrimidine substrates with aromatic thiol residues, mediated by the iodine/persulfate reagent system. The reported herein sulfenylation protocol has afforded a series of previously undescribed azolopyrimidine-based thioethers obtained in yields of up to 87 %. Applicability of the approach to the selenium-centered synthons has been demonstrated as well. Besides, the in silico study with regard to the achieved cross-coupling products has suggested the possible affinity to the SARS-CoV-2 main protease (Mpro), as follows from the conducted pharmacophore search and the molecular docking experiments. As a result, the developed synthetic transformation is expected to be of utility in the design of novel antiviral agents based on small azaheterocyclic molecules.
Collapse
Affiliation(s)
- Alexey A Akulov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Anastasia I Silaeva
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Mikhail V Varaksin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Ilya I Butorin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Daniil N Lyapustin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Roman A Drokin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Svetlana K Kotovskaya
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Anna V Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Russian Federation
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Russian Federation
| | - Vladimir L Rusinov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Valery N Charushin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Oleg N Chupakhin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| |
Collapse
|
2
|
Cen K, Liu Y, Yu J, Zeng Z, Hou Q, He G, Ouyang M, Wang Q, Wang D, Zhao F, Cai J. Electrocatalytic Cascade Selenylation/Cyclization/Deamination of 2-Hydroxyaryl Enaminones: Synthesis of 3-Selenylated Chromones under Mild Conditions. J Org Chem 2024; 89:8632-8640. [PMID: 38843514 DOI: 10.1021/acs.joc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Herein, we disclosed a highly efficient pathway toward 3-selenylated chromone derivatives via electrocatalytic cascade selenylation/cyclization/deamination of 2-hydroxyaryl enaminones with diselenides. This method showed mild conditions, easy operation, wide substrate scope, and good functional group tolerance. Furthermore, this electrosynthesis strategy was amendable to scale-up the reaction. Additionally, the preliminary experiments revealed that this reaction probably proceeded via a cation pathway instead of a radical pathway.
Collapse
Affiliation(s)
- Kaili Cen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Liu
- Chuanshan College University of South China, Hengyang, Hunan 421001, China
| | - Junhong Yu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhouting Zeng
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qian Hou
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guojun He
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mixia Ouyang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qiaolin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Dahan Wang
- Department of Food and Chemical Engineering, Shaoyang University, Shaoyang, Hunan 422100, China
| | - Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Jinhui Cai
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
3
|
Li Z, Li S, Qian G, Ke Z, Chen Z. Copper-Catalyzed Synthesis of Difluoromethylated/C-4- and C-5-Functionalized Polycyclic Coumarin Derivatives. J Org Chem 2024; 89:8084-8098. [PMID: 38810000 DOI: 10.1021/acs.joc.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A facile and novel synthetic method for the synthesis of functionalized polycyclic coumarins at the C-4 and C-5 positions is proposed for the first time, which employs copper-catalyzed addition reactions of undiscovered alkenes with difluoromethyl radicals to construct polycyclic coumarins. This strategy is characterized by high regioselectivity, easy availability of raw materials, and simple operation. Additionally, such undiscovered coumarin alkenes can be reacted with a variety of difluoromethyl precursors to obtain a wide range of valuable C-4 and C-5 position functionalized/difluoromethylated polycyclic coumarins. More importantly, some of the products showed significant inhibition of proliferation in vitro against melanoma B16-F10 and lung cancer A549 cell lines with optimal IC50 values of 8.57 and 16.04 μM, respectively.
Collapse
Affiliation(s)
- Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuo Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guosong Qian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
4
|
Kumar P, Bhalla A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Cham) 2024; 382:12. [PMID: 38589598 DOI: 10.1007/s41061-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
5
|
Huang X, Yao Y, Yin X, Guan W, Yuan C, Fang Z, Qin H, Liu C, Guo K. Electro-oxidative quinylation of sulfides to sulfur ylides in batch and continuous flow. iScience 2024; 27:108605. [PMID: 38174319 PMCID: PMC10762464 DOI: 10.1016/j.isci.2023.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
An unprecedented strategy for preparing a series of sulfur ylides through electro-oxidative quinylation of sulfides in batch and continuous flow has been developed. Good to excellent yields were obtained with excellent functional group compatibility and good concentration tolerance under exogenous oxidant- and transition metal-free conditions. Advantageously, this electrosynthesis methodology was scalable with higher daily production and steady production was achieved attributing to the use of micro-flow cells.
Collapse
Affiliation(s)
- Xiangxing Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifei Yao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xing Yin
- Intervention Therapy Department, General Hospital of Eastern Theater Command, Nanjing 222042, China
| | - Wenjing Guan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengcheng Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Luo QX, Ji HT, Lu YH, Wang KL, Ou LJ, He WM. Selectfluor-Mediated Electrophilic Annulation of 2-Alkynyl Biaryls with Diorganyl Diselenides. J Org Chem 2023. [PMID: 38016176 DOI: 10.1021/acs.joc.3c01271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A general and efficient method for the synthesis of various selanyl phenanthrenes/polycyclic heteroaromatics through the electrophilic annulation of 2-alkynyl biaryls with diorganyl diselenides under metal-free and mild conditions was established. The sulfanyl phenanthrene was also obtained in moderate yields.
Collapse
Affiliation(s)
- Qing-Xia Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ke-Li Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
7
|
Ouyang WT, Ji HT, Jiang J, Wu C, Hou JC, Zhou MH, Lu YH, Ou LJ, He WM. Ferrocene/air double-mediated FeTiO 3-photocatalyzed semi-heterogeneous annulation of quinoxalin-2(1 H)-ones in EtOH/H 2O. Chem Commun (Camb) 2023; 59:14029-14032. [PMID: 37964611 DOI: 10.1039/d3cc04020h] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
With both ferrocene and air as the redox catalysts, for the first time, the low-cost natural ilmenite (FeTiO3) was successfully used for photocatalytic bond formations. Under the assistance of a traceless H-bond, and HCHO as the methylene reagent, a variety of imidazo[1,5-a]quinoxalinones were semi-heterogeneously photosynthesized in high yields with good functional group compatibility.
Collapse
Affiliation(s)
- Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jia-Cheng Hou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Min-Hang Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Lu YH, Mu SY, Jiang J, Zhou MH, Wu C, Ji HT, He WM. Paraformaldehyde as C1 Synthon: Electrochemical Three-Component Synthesis of Tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones in Aqueous Ethanol. CHEMSUSCHEM 2023; 16:e202300523. [PMID: 37728196 DOI: 10.1002/cssc.202300523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/21/2023]
Abstract
A green and practical method for the electrochemical synthesis of tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones through the three-component reaction of quinoxalin-2(1H)-ones, N-arylglycines and paraformaldehyde was reported. In this strategy, EtOH played dual roles (eco-friendly solvent and waste-free pre-catalyst) and the in situ generated ethoxide promoted triple sequential deprotonations.
Collapse
Affiliation(s)
- Yu-Han Lu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Si-Yu Mu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Min-Hang Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
9
|
Ren SY, Zhou Q, Zhou HY, Wang LW, Mulina OM, Paveliev SA, Tang HT, Terentʼev AO, Pan YM, Meng XJ. Three-Component Electrochemical Aminoselenation of 1,3-Dienes. J Org Chem 2023; 88:5760-5771. [PMID: 37027491 DOI: 10.1021/acs.joc.3c00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Azoles and organoselenium compounds are pharmacologically important scaffolds in medicinal chemistry and natural products. We developed an efficient regioselective electrochemical aminoselenation reaction of 1,3-dienes, azoles, and diselenide derivatives to access selenium-containing allylazoles skeletons. This protocol is more economical and environmentally friendly and features a broad substrate scope; pyrazole, triazole, and tetrazolium were all tolerated under the standard conditions, which could be applied to the expedient synthesis of bioactive molecules and in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sai-Yan Ren
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Qi Zhou
- Adesis Inc. A Universal Display Company, New Castle, Delaware 19720, United States
| | - He-Yang Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Lin-Wei Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Olga M Mulina
- Russian Acad Sci, Zelinsky Inst Organ Chem, 47 Leninsky Prosp, Moscow 119991, Russia
| | - Stanislav A Paveliev
- Russian Acad Sci, Zelinsky Inst Organ Chem, 47 Leninsky Prosp, Moscow 119991, Russia
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Alexander O Terentʼev
- Russian Acad Sci, Zelinsky Inst Organ Chem, 47 Leninsky Prosp, Moscow 119991, Russia
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xiu-Jin Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
10
|
Belladona AL, Cardoso Dilelio M, Cargnelutti R, Barcellos T, Cruz Silveira C, Schumacher RF. Direct and Regioselective C−H Selenylation of 4‐Aminocoumarin Derivatives Mediated by Selectfluor®. ChemistrySelect 2023. [DOI: 10.1002/slct.202300377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Andrei Lucca Belladona
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Marina Cardoso Dilelio
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Roberta Cargnelutti
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products University of Caxias do Sul (UCS) 95070 560 Caxias do Sul RS Brazil
| | - Claudio Cruz Silveira
- Department of Chemistry Federal University of Santa Maria (UFSM) 97105 900 Santa Maria RS Brazil
| | | |
Collapse
|
11
|
He WB, Tang LL, Jiang J, Li X, Xu X, Yang TB, He WM. Paired Electrolysis Enabled Cyanation of Diaryl Diselenides with KSCN Leading to Aryl Selenocyanates. Molecules 2023; 28:molecules28031397. [PMID: 36771059 PMCID: PMC9919590 DOI: 10.3390/molecules28031397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The first example of paired electrolysis-enabled cyanation of diaryl diselenides, with KSCN as the green cyanating agent, has been developed. A broad range of aryl selenocyanates can be efficiently synthesized under chemical-oxidant- and additive-free, energy-saving and mild conditions.
Collapse
Affiliation(s)
- Wei-Bao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luo-Lin Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xinhua Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Correspondence: (X.X.); (W.-M.H.)
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: (X.X.); (W.-M.H.)
| |
Collapse
|
12
|
Wei W, Zhan L, Gao L, Huang G, Ma X. Research Progress of Electrochemical Synthesis of C-Sulfonyl Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Gui QW, Teng F, Yu P, Wu YF, Nong ZB, Yang LX, Chen X, Yang TB, He WM. Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Metal, iodine and oxidant-free electrosynthesis of substituted indoles from 1-(2-aminophenyl)alcohols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
TBAI/H2O-cooperative electrocatalytic decarboxylation coupling-annulation of quinoxalin-2(1H)-ones with N-arylglycines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Chen J, Zhang R, Ma C, Zhang P, Zhang Y, Wang B, Xue F, Jin W, Xia Y, Liu C. Sustainable electrochemical dearomatization for the synthesis of diverse 2, 3-functionalized indolines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Sun SS, Mo ZY, Chen YY, Xu YL. Synthesis of Selenyl-Substituted Quinoline Derivatives via Substrate-Controlled Three-Component Domino Reactions. J Org Chem 2022; 87:12447-12454. [PMID: 36048432 DOI: 10.1021/acs.joc.2c01260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple and efficient method for the preparation of selenyl-substituted quinoline derivatives through a CSp3-H selenylation of in situ-generated 3-acetyl quinoline has been developed. This protocol is easy to handle, scalable, and good functional group tolerant, providing a rapid method to 3-selenoacetyl quinoline and 3-diselenoacetyl quinoline derivatives.
Collapse
Affiliation(s)
- Shuang-Shuang Sun
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Zu-Yu Mo
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Yan Chen
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Li Xu
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
18
|
Chen Z, Tang W, Yang S, Yang L. Electrochemical synthesis of 3-halogenated spiro [4,5]trienones based on dearomative spirocyclization strategy. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Li X, Huang J, Xu L, Liu P, Wei Y. Synthesis of β-Arylseleno Sulfoximines: A Metal-Free Three-Component Reaction Mediated by Tetrabutylammonium Tribromide. J Org Chem 2022; 87:10684-10697. [PMID: 35939820 DOI: 10.1021/acs.joc.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A tetrabutylammonium tribromide-mediated three-component reaction of alkenes, diselenides, and sulfoximines has been established herein, providing direct and metal-free access to diverse β-arylseleno sulfoximine derivatives. This regioselective sulfoximido-selenization protocol proceeds efficiently under mild and ambient conditions with generally good yields. This strategy is featured by step and atom economy, practicability, a broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Xiaoman Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Jiawei Huang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832003, Xinjiang, P. R. China
| |
Collapse
|
20
|
Yang X, Sun J, Huang X, Jin Z. Asymmetric Synthesis of Structurally Sophisticated Spirocyclic Pyrano[2,3- c]pyrazole Derivatives Bearing a Chiral Quaternary Carbon Center. Org Lett 2022; 24:5474-5479. [PMID: 35857420 DOI: 10.1021/acs.orglett.2c02211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A carbene-catalyzed enantio- and diastereoselective [2 + 4] cycloaddition reaction is developed for quick and efficient access to structurally complex multicyclic pyrano[2,3-c]pyrazole molecules. The reaction tolerates a broad scope of substrates bearing various substitution patterns, with the multicyclic pyrano[2,3-c]pyrazole products afforded in generally good to excellent yields and optical purities. The chiral molecules obtained from this approach has found promising applications in the development of novel bacteriacides for plant protection.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
21
|
Yang M, Hua J, Wang H, Ma T, Liu C, He W, Zhu N, Hu Y, Fang Z, Guo K. Photomediated Spirocyclization of N-Benzyl Propiolamide with N-Iodosuccinimide for Access to Azaspiro[4.5]deca-6,9-diene-3,8-dione. J Org Chem 2022; 87:8445-8457. [PMID: 35678323 DOI: 10.1021/acs.joc.2c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal- and oxidant-free route for affording azaspiro[4.5]deca-6,9-diene-3,8-dione via photomediated iodinated spirocyclization of N-(4-methoxybenzyl) propiolamide has been developed. The reaction underwent a radical addition/ipso-cyclization/dearomatization process at room temperature and successfully constructed C-C and C-I bonds. This green and convenient approach could be generally expanded to produce a range of iodinated spirocyclization products in moderate to good yields.
Collapse
Affiliation(s)
- Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
22
|
He WB, Zhao SJ, Chen JY, Jiang J, Chen X, Xu X, He WM. External electrolyte-free electrochemical one-pot cascade synthesis of 4-thiocyanato-1H-pyrazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Wang X, Wu S, Zhong Y, Wang Y, Pan Y, Tang H. Electrochemically mediated decarboxylative acylation of N-nitrosoanilines with α-oxocarboxylic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Liu XS, Li M, Dong K, Peng S, Liu L. Highly Stereoselective Synthesis of Tetrasubstituted Vinyl Selenides via Rhodium-Catalyzed [1,4]-Acyl Migration of Selenoesters and Diazo Compounds. Org Lett 2022; 24:2175-2180. [PMID: 35285649 DOI: 10.1021/acs.orglett.2c00477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, we disclose a highly stereoselective Rh(II)-catalyzed 1,4-acyl rearrangement of selenium esters and α-diazo carbonyl compounds, which provides an efficient method for synthesizing tetrasubstituted vinyl selenides. Furthermore, this reaction also offers a synthetic tool for medium and large ring compounds.
Collapse
Affiliation(s)
- Xun-Shen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingjia Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Kexin Dong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shaoting Peng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
25
|
Electrochemical regioselective synthesis of N-substituted/unsubstituted 4-selanylisoquinolin-1(2H)-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Ding D, Xu L, Wei Y. The Synthesis of α-Keto Acetals from Terminal Alkynes and Alcohols via Synergistic Interaction of Organoselenium Catalysis and Electrochemical Oxidation. J Org Chem 2022; 87:4912-4917. [PMID: 35179035 DOI: 10.1021/acs.joc.1c02681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, an unprecedented electrochemical approach for the synthesis of α-keto acetals has been established from readily available terminal alkynes and alcohols. By merging the electrochemical and organoselenium-catalyzed processes, the desired products are obtained at room temperature in the absence of basic or metallic additives, with carbonyl and acetal motifs incorporated simultaneously across the triple bonds in a single operation.
Collapse
Affiliation(s)
- Ding Ding
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| |
Collapse
|
28
|
Tang L, Hu Q, Yang K, Elsaid M, Liu C, Ge H. Recent advances in direct α-C(sp3)-H bond functionalization of thioethers. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
29
|
Wang K, Huang J, Liu W, Wu Z, Yu X, Jiang J, He W. Direct Synthesis of 3-Sulfonylquinolines from N-Propargylanilines with Sulfonyl Chlorides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Chen Z, Sun J, Ke Z, Huang X, Li Z. Silver-catalyzed stereoselective C-4 arylthiodifluoromethylation of coumarin-3-carboxylic acids via a double decarboxylative strategy. Org Chem Front 2022. [DOI: 10.1039/d1qo01609a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile silver-catalyzed dual decarboxylation of arylthio-difluoroacetic acid with coumarin-3-carboxylic acids/chromone-3-carboxylic acids was developed.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
31
|
Mu S, Li H, Wu Z, Peng J, Chen J, He W. Electrocatalytic Three-Component Synthesis of 4-Bromopyrazoles from Acetylacetone, Hydrazine and Diethyl Bromomalonate. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202211002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Liu M, Zhang X, Chu S, Ge Y, Huang T, Liu Y, Yu L. Selenization of cotton products with NaHSe endowing the antibacterial activities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
He MX, Yao Y, Ai CZ, Mo ZY, Wu YZ, Zhou Q, Pan YM, Tang HT. Electrochemically-mediated C–H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Org Chem Front 2022. [DOI: 10.1039/d1qo01458g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We reported an electrocatalytic C–H activation method to construct novel highly functionalized tetrasubstituted furan derivatives, which uses allenes and 1,3-dicarbonyl compounds as substrates.
Collapse
Affiliation(s)
- Mu-Xue He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yan Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Zhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zu-Yu Mo
- Pharmacy School, Guilin Medical University, Guilin 541004, China
| | - Yu-Zheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qi Zhou
- Adesis Inc. A Universal Display company, New Castle, Delaware 19720, USA
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hao-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
34
|
Liu HF, He MX, Tang HT. Electrochemical C–H functionalization to synthesize 3-hydroxyalkylquinoxalin-2(1 H)-ones via quinoxalin-2(1 H)-ones and aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01281b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported an electrocatalytic direct C3-hydroxyalkylation of quinoxalin-2(1H)-ones to construct 3-hydroxyalkylquinoxalin-2(1H)-one derivatives, which uses unprotected quinoxalin-2(1H)-ones and aliphatic aldehydes as substrates.
Collapse
Affiliation(s)
- Han-Fu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, Guilin 541199, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, Guilin 541199, People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
35
|
Li H, Chen P, Wu Z, Lu Y, Peng J, Chen J, He W. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH 4SCN. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Wei W, Zhong Y, Feng Y, Gao L, Tang H, Pan Y, Ma X, Mo Z. Electrochemically Mediated Direct C(
sp
3
)−H Sulfonylation of Xanthene Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wan‐Jie Wei
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Yu‐Jing Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yu‐Feng Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Lei Gao
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Xian‐Li Ma
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| |
Collapse
|
37
|
Ye Z, Zhu R, Wang F, Jiang H, Zhang F. Electrochemical Difunctionalization of Styrenes via Chemoselective Oxo-Azidation or Oxo-Hydroxyphthalimidation. Org Lett 2021; 23:8240-8245. [PMID: 34697944 DOI: 10.1021/acs.orglett.1c02991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atom- and step-economic oxo-azidation and oxo-hydroxyphthalimidation of styrenes have been developed under mild electrolytic conditions, respectively. Various valuable alpha-azido or hydroxyphthalimide aromatic ketones were synthesized efficiently from readily available styrenes, azides, and N-hydroxyphthalimides. Mechanism studies show that two different pathways involved in these two transformations.
Collapse
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Rongjin Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Haobin Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
38
|
Ma Y, Wu S, Jiang S, Xiao F, Deng G. Electrosynthesis of Azobenzenes Directly from Nitrobenzenes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yanfeng Ma
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shanghui Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou Guangdong 510640 China
| |
Collapse
|
39
|
Li W, Tang Y, Ouyang W, Lu Y, Chen J, He W. Electrochemical Selenylation of N-Unprotected Anilines for Consturcing 4-(Organylselanyl)anilines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
He S, Zhang H, Wu H, Zhou S, Xiao Y, You X, Chen J. ICl-Catalyzed C sp2—H Selenation of Aminocoumarin Derivatives. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Guan F, Chen Y, Zhang Y, Yu R. A coupling process of electrodialysis with oxime hydrolysis reaction for preparation of hydroxylamine sulfate. RSC Adv 2021; 11:19238-19247. [PMID: 35478614 PMCID: PMC9033559 DOI: 10.1039/d1ra02766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/05/2021] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
A coupling process of electrodialysis with oxime hydrolysis reaction for preparing hydroxylamine sulfate was developed in this work. The three steps, including the oxime hydrolysis, the hydroxylamine protonation reaction, and the separation process, are integrated into a triple-chamber electrodialysis stack. In this novel method, the impacts of current density, oxime concentration, and reaction time were investigated. The results indicated that the decomposition voltage is above 1.93 V. Furthermore, the current density is 4.69 × 10−2 A cm−2, the oxime concentration is 1.00 mol L−1, and when reaction time reaches 600 min, the yield of hydroxylamine sulfate is 67.59%. Moreover, the process has excellent mass transfer performance, mild reaction conditions, and simple operation compared with conventional methods. This work will provide a theoretical basis for the green and continuous manufacture of hydroxylamine sulfate and a guide for preparing other hydroxylamine salts through such hydrolysis methods. A coupling process of electrodialysis with oxime hydrolysis reaction for preparing hydroxylamine sulfate was developed in this work.![]()
Collapse
Affiliation(s)
- Fenggang Guan
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| | - Yanyan Chen
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| | - Yuying Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| | - Rujun Yu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| |
Collapse
|
42
|
Cheng S, Ou C, Lin H, Jia J, Tang H, Pan Y, Huang G, Meng X. Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|