1
|
Feng B, Guo H, Wang X, Hu X, Li C, Guo Y, Su J, Xuan Q, Song Q. Difluorocarbene-Enabled Dehydration of Primary Amides To Access Nitriles. Org Lett 2025; 27:2992-2996. [PMID: 40091224 DOI: 10.1021/acs.orglett.5c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A cost-effective and environmentally friendly method for the direct conversion of primary amides to nitriles was developed using commercially available non-toxic ethyl bromodifluoroacetate as a difluorocarbene precursor under metal-free and ligand-free conditions. The reaction features high yields and tolerates various sensitive moieties, including alkyl, alkenyl, ether, sulfone, sulfoxide, heteroaryl, chloro, bromo, iodo, hydroxyl, nitro, and cyano groups, and late-stage modification of complex molecules is also feasible. Moreover, the present method is effective on large scales, showing potential for industrial application.
Collapse
Affiliation(s)
- Bofan Feng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Huosheng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Xinyuan Hu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Yu Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
2
|
Martínková L, Kotik M, Kulik N, Křístková B, Šťastná K, Winkler M. Aldoxime dehydratases: production, immobilization, and use in multistep processes. Appl Microbiol Biotechnol 2024; 108:518. [PMID: 39545989 PMCID: PMC11568032 DOI: 10.1007/s00253-024-13272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 11/17/2024]
Abstract
The synthesis of nitriles is of utmost importance for preparative organic chemistry. The classical routes are often associated with disadvantages such as toxicity of the reagents and drastic conditions. The uses of enzymes like aldoxime dehydratases (Oxds) and hydroxynitrile lyases constitute attractive benign alternatives. In this review, we summarize the recent trends regarding Oxds. Thousands of oxd genes were sequenced but less than thirty Oxds were investigated on protein level. We give an overview of these Oxds, their sequence analysis, conditions required for their overexpression, and their purification and assays. We then focus on the use of Oxds especially in multistep reactions combining the chemical or chemoenzymatic synthesis of aldoximes from different starting materials with the enzymatic dehydration of aldoximes to nitriles, possibly followed by the hydration of nitriles to amides. Progress in Oxd immobilization is also highlighted. Based on data published mainly in the last 5 years, we evaluate the industrial prospects of these enzyme processes in comparison with some other innovations in nitrile synthesis. KEY POINTS: • Aldoxime dehydratases (Oxds) are promising for cyanide-free routes to nitriles • A comprehensive overview of wet-lab explored Oxds is provided • Recent trends include combining Oxds with other enzymes or chemical catalysts.
Collapse
Affiliation(s)
- Ludmila Martínková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic.
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
| | - Natalia Kulik
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 81, Třeboň, Czech Republic
| | - Barbora Křístková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Katarína Šťastná
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 44, Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology GmbH, Krenngasse 37, 8010, Graz, Austria.
| |
Collapse
|
3
|
Shu L, Lv Y, Chen Z, Huang Y, Zhang M, Jin Z, Li T, Chi YR. Design, synthesis and Anti-PVY activity of planar chiral thiourea derivatives incorporated with [2.2]Paracyclophane. PEST MANAGEMENT SCIENCE 2024; 80:4450-4458. [PMID: 38662600 DOI: 10.1002/ps.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Potato virus Y (PVY) is a prominent representative of plant viruses. It can inflict severe damage upon Solanaceae plants, leading to global dissemination and substantial economic losses. To discover new antiviral agents, a class of planar chiral thiourea molecules through the key step of N-heterocyclic carbene-catalyzed nitrile formation reaction was synthesized with excellent optical purities for antiviral evaluations against plant virus PVY. RESULTS The absolute configurations of the planar chiral compounds exhibited obvious distinctions in the anti-PVY activities. Notability, compound (S)-4u exhibited remarkable curative activities against PVY, with a half maximal effective concentration (EC50) of 349.3 μg mL-1, which was lower than that of the ningnanmycin (NNM) (EC50 = 400.8 μg mL-1). Additionally, The EC50 value for the protective effects of (S)-4u was 146.2 μg mL-1, which was superior to that of NNM (276.4 μg mL-1). Furthermore, the mechanism-of-action of enantiomers of planar chiral compound 4u was investigated through molecular docking, defensive enzyme activity tests and chlorophyll content tests. CONCLUSION Biological mechanism studies have demonstrated that the configuration of planar chiral target compounds plays a crucial role in the molecular interaction with PVY-CP, enhancing the activity of defense enzymes and affecting chlorophyll content. The current study has provided significant insights into the roles played by planar chiralities in plant protection against viruses. This paves the way for the development of novel green pesticides bearing planar chiralities with excellent optical purities. © 2024 Society of Chemical Industry.
Collapse
Grants
- RG7/20 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2018-T3-1-003 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- QianjiaoheKY(2020)004 Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
- 2022YFD1700300 National Key Research and Development Program of China
- 111Program, D20023 the Program of Introducing Talents of Discipline to Universities of China
- GuidaTegangHezi(2023)23 Natural Science Foundation of Guizhou University
- [2019]1020 the Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2021]Key033 the Science and Technology Department of Guizhou Province
- 32172459 National Natural Science Foundation of China
- 21961006 National Natural Science Foundation of China
- 22371057 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Liangzhen Shu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ya Lv
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhongyin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Huang Y, Peng X, Chen J, Shu L, Zhang M, Jin J, Jin Z, Chi YR. Discovery of Novel Chiral Indole Derivatives Containing the Oxazoline Moiety as Potential Antiviral Agents for Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6979-6987. [PMID: 38520352 DOI: 10.1021/acs.jafc.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 μg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 μg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.
Collapse
Affiliation(s)
- Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinli Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
6
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Křístková B, Martínková L, Rucká L, Kotik M, Kulik N, Rädisch R, Winkler M, Pátek M. Immobilization of aldoxime dehydratases on metal affinity resins and use of the immobilized catalysts for the synthesis of nitriles important in fragrance industry. J Biotechnol 2024; 384:12-19. [PMID: 38373531 DOI: 10.1016/j.jbiotec.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.
Collapse
Affiliation(s)
- Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague CZ-166 28, Czech Republic
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic.
| | - Lenka Rucká
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| | - Michael Kotik
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| | - Natalia Kulik
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, Třeboň CZ-37981, Czech Republic
| | - Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague CZ-128 44, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, Graz A-8010, Austria; Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, Graz A-8010, Austria
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| |
Collapse
|
8
|
Yamaguchi T, Asano Y. Nitrile-synthesizing enzymes and biocatalytic synthesis of volatile nitrile compounds: A review. J Biotechnol 2024; 384:20-28. [PMID: 38395363 DOI: 10.1016/j.jbiotec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
9
|
Londoño-Salazar J, Ayala M, Powell DR, Shao Y, Richter-Addo GB. Interactions of arylhydroxylamines and alkylaldoximes with a rhodium porphyrin. J Inorg Biochem 2023; 247:112337. [PMID: 37517330 DOI: 10.1016/j.jinorgbio.2023.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Heme enzymes are involved in the binding and metabolism of hydroxylamine (RNHOH) and aldoxime (RCH=NOH) compounds (R = H, alkyl, aryl). We report the synthesis and X-ray crystal structure of a metalloporphyrin in complex with an arylhydroxylamine, namely that of (TPP)Rh(PhNHOH)(C6H4Cl) (TPP = tetraphenylpophryinato dianion). The crystal structure reveals, in addition to N-binding of PhNHOH to Rh, the presence of an intramolecular H-bond between the hydroxylamine -OH proton and a porphyrin N-atom. Results from density functional theory (DFT) calculations support the presence of this intramolecular H-bond in this global minimum structure, and a natural bond order (NBO) analysis reveals that this H-bond comprises a donor π N=C (porphyrin) to acceptor σ* O-H (hydroxylamine) interaction of 2.32 kcal/mol. While DFT calculations predict the presence of similar intramolecular H-bond interactions in the related aldoxime complexes (TPP)Rh(RCH=NOH)(C6H4Cl) in their global minima structures, the X-ray crystal structure obtained for the (TPP)Rh(CH3(CH2)2CH=NOH)(C6H4Cl) complex is consistent with the local (non-global) minima conformation that does not have this intramolecular H-bond interaction.
Collapse
Affiliation(s)
| | - Megan Ayala
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| |
Collapse
|
10
|
Wang X, Yan H, Jia C, Fang Z, Duan J, Guo K. Synthesis of 2,4,6-Trisubstituted Pyrimidines through Copper-Catalyzed [4 + 2] Annulation of α,β-Unsaturated Ketoximes with Activated Nitriles. J Org Chem 2023; 88:12236-12243. [PMID: 37610229 DOI: 10.1021/acs.joc.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The copper-catalyzed [4 + 2] annulation of α,β-unsaturated ketoximes with activated nitriles for the rapid construction of 2,4,6-trisubstituted pyrimidines in moderate to good yields has been developed. The reaction features synthetic simplicity, good functional group tolerance, and gram-scale applicability. A plausible mechanism is proposed based on mechanistic investigations.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenglong Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Tang J, Li Y, Zhang L, Mu J, Jiang Y, Fu H, Zhang Y, Cui H, Yu X, Ye Z. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms 2023; 11:2077. [PMID: 37630637 PMCID: PMC10459833 DOI: 10.3390/microorganisms11082077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regulates almost all aspects of plant growth and development, and is one of the most important plant hormones. In microorganisms too, IAA plays an important role in growth, development, and even plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microorganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly summarizes the biosynthesis pathways that have been reported in microorganisms, including the indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some pathways interact with each other through common key genes to constitute a network of IAA biosynthesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial impacts on plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.); (L.Z.)
| |
Collapse
|
12
|
Bigdelo M, Nemati F, Rangraz Y. Organoselenium functionalized SBA-15 as a new catalyst for the cyanide-free conversion of oximes to nitriles. BMC Chem 2022; 16:99. [PMID: 36414989 PMCID: PMC9682781 DOI: 10.1186/s13065-022-00899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Here we report a new selenium-based heterogeneous catalyst, which was prepared from the immobilization of diphenyl diselenide on amine-functionalized Santa Barbara Amorphous-15 (SBA-15). The catalyst characterization study has been confirmed by different analysis methods including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction patterns (XRD), field-emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. RESULTS The newly designed catalyst was successfully applied in the green dehydration reaction of oximes to corresponding nitriles in the presence of hydrogen peroxide/air. To demonstrate the role of the catalyst in this study, the model reaction was also carried out in the absence of the catalyst and a trace yield of the relevant product was achieved. CONCLUSION In this way, a series of nitrile derivatives were obtained with 72-96% yields, also, the catalyst could be separated easily and recycled for four consecutive runs with no obvious drop in catalytic activity.
Collapse
Affiliation(s)
- Maryam Bigdelo
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| | - Firouzeh Nemati
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran.
| | | |
Collapse
|
13
|
Qin L, Deng G, Du L, Cui B, Wan N, Chen Y. Deracemisation of racemic 2-substituted indolines by monoamine oxidase from Pseudomonas monteilii ZMU-T01. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
15
|
Deng GZ, Zhou X, Yu QX, Mou XQ, An M, Cui HB, Zhou XJ, Wan NW, Li Z, Chen YZ. Highly Enantioselective Hydroxylation of 3-Arylpropanenitriles to Access Chiral β-Hydroxy Nitriles by Engineering of P450pyr Monooxygenase. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guo-Zhong Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Quan-Xiang Yu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Miao An
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
16
|
Wohlgemuth R. Selective Biocatalytic Defunctionalization of Raw Materials. CHEMSUSCHEM 2022; 15:e202200402. [PMID: 35388636 DOI: 10.1002/cssc.202200402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biobased raw materials, such as carbohydrates, amino acids, nucleotides, or lipids contain valuable functional groups with oxygen and nitrogen atoms. An abundance of many functional groups of the same type, such as primary or secondary hydroxy groups in carbohydrates, however, limits the synthetic usefulness if similar reactivities cannot be differentiated. Therefore, selective defunctionalization of highly functionalized biobased starting materials to differentially functionalized compounds can provide a sustainable access to chiral synthons, even in case of products with fewer functional groups. Selective defunctionalization reactions, without affecting other functional groups of the same type, are of fundamental interest for biocatalytic reactions. Controlled biocatalytic defunctionalizations of biobased raw materials are attractive for obtaining valuable platform chemicals and building blocks. The biocatalytic removal of functional groups, an important feature of natural metabolic pathways, can also be utilized in a systemic strategy for sustainable metabolite synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Łódź, 90-537, Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8002, Zurich, Switzerland
| |
Collapse
|
17
|
Ju Z, Xu J, Li Z, Fang J, Li M, Howell DC, Chen FE. Benzaldehyde lyase-catalyzed enantioselective C–C bond formation and cleavage: A review. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Dehydrative Beckmann rearrangement and the following cascade reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Xu G, Jia C, Wang X, Yan H, Zhang S, Wu Q, Zhu N, Duan J, Guo K. Copper-Catalyzed Three-Component Cascade Annulation for Divergent Syntheses of Imidazoles and Dihydroimidazoles. Org Lett 2022; 24:1060-1065. [DOI: 10.1021/acs.orglett.1c04308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenglong Jia
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xuemei Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Mi X, Pi C, Feng W, Cui X. Recent progress in the application of iodonium ylides in organic synthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo01332k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review summarizes the recent advances in the synthetic application of iodonium ylides covering 2017 to 2022.
Collapse
Affiliation(s)
- Xia Mi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Chao Pi
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Xiuling Cui
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
21
|
Zheng D, Asano Y. A Cyanide‐free Biocatalytic Process for Synthesis of Complementary Enantiomers of 4‐Chloro‐3‐hydroxybutanenitrile From Allyl Chloride. ChemCatChem 2021. [DOI: 10.1002/cctc.202100835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daijun Zheng
- Biotechnology Research Center and Department of Biotechnology Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan)
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan)
| |
Collapse
|
22
|
Domínguez de María P. Nitrile Synthesis with Aldoxime Dehydratases: A Biocatalytic Platform with Applications in Asymmetric Synthesis, Bulk Chemicals, and Biorefineries. Molecules 2021; 26:molecules26154466. [PMID: 34361620 PMCID: PMC8347273 DOI: 10.3390/molecules26154466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022] Open
Abstract
Nitriles comprise a broad group of chemicals that are currently being industrially produced and used in fine chemicals and pharmaceuticals, as well as in bulk applications, polymer chemistry, solvents, etc. Aldoxime dehydratases catalyze the cyanide-free synthesis of nitriles starting from aldoximes under mild conditions, holding potential to become sustainable alternatives for industrial processes. Different aldoxime dehydratases accept a broad range of aldoximes with impressive high substrate loadings of up to >1 Kg L−1 and can efficiently catalyze the reaction in aqueous media as well as in non-aqueous systems, such as organic solvents and solvent-free (neat substrates). This paper provides an overview of the recent developments in this field with emphasis on strategies that may be of relevance for industry and sustainability. When possible, potential links to biorefineries and to the use of biogenic raw materials are discussed.
Collapse
Affiliation(s)
- Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, 35011 Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|