1
|
Yang CJ, Huang YD, Zhang YY, Pan YZ, Yang J, Pan YM, Gan T, Tang HT, Zhang X, Li WH, Wang D. A Mn-Rh dual single-atom catalyst for inducing C-C cleavage: relay catalysis reversing chemoselectivity in C-H oxidation. Chem Sci 2025; 16:7329-7338. [PMID: 40144497 PMCID: PMC11934264 DOI: 10.1039/d4sc08658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The integration of two entirely unrelated organic reactions into a novel reaction poses a formidable challenge. While diatomic catalysts (DACs) have exhibited promise as a framework for realizing this concept, the fusion of disparate organic reactions using DACs remains exceptionally uncommon. The reason for this is that there are often interactions between the two metal sites in DACs, which create new difficulties in catalyst design for already complex reaction systems. Based on this situation, the incorporation of two completely isolated single-atom catalytic systems into the same reaction is a promising solution. Herein, we synthesized a Mn-Rh dual single-atom catalyst (DSAC, Mn1-Rh1@O-TiC) and this DSAC demonstrates remarkable selectivity and conversion efficiency in the oxidation reaction of cumene, facilitating the highly efficient production of acetophenone (AP) in an almost quantitative form. The two completely isolated metal catalytic centers, Mn and Rh, each playing a distinct role in the reaction, synergistically propel the directed conversion of cumene to AP in a well-defined manner. This investigation not only illustrates a rare instance of dual single-atom catalyst-mediated relay catalysis in organic synthesis but also imparts valuable insights into the systematic design of catalytic systems for organic tandem reactions, approached from the vantage point in the atomic scale.
Collapse
Affiliation(s)
- Chang-Jie Yang
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Yu-Da Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Yu-Yuan Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Yong-Zhou Pan
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Xia Zhang
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
2
|
Li J, Yu Z, Zhao J, Ma C, Duan L, Liu Z, Sun H, Zhao G, Liu Q, Meng Q. Visible-Light-Induced Divergent Oxygenation of Methylbenzene Utilizing Aryl Halides. J Org Chem 2025; 90:1245-1255. [PMID: 39601597 DOI: 10.1021/acs.joc.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The selective oxidation of methylbenzene to value-added products is of indisputable importance in organic synthesis. Although photocatalytic oxidation reactions of toluene have achieved great success for the preparation of its oxidative products, such as carboxylic acids, benzaldehyde, and benzoate, there remains a lack of a unified photocatalytic system for the selective preparation of these oxidation products. Herein, we report a metal- and additive-free photocatalytic protocol enabled by aryl halides using O2 as a green oxidant for the selective synthesis of the above-mentioned three oxidation products by adjusting the reaction solvent. This strategy features many advantages, including environmentally friendly and mild reaction conditions, broad substrate applicability and functional group tolerance, and potential practical application for the synthesis of aromatic carboxylic drugs and polymer materials and degradation of polystyrene waste. The continuous-flow system was utilized for the oxidation of toluene, which resulted in a reduced reaction time and increased production efficiency. Detailed mechanistic investigation revealed that the hydrogen atom transfer process was facilitated by the bromine radical from aryl halides for further oxidation, and an electron donor-acceptor complex of methylbenzene and aryl halides may exist.
Collapse
Affiliation(s)
- Jianing Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liyuan Duan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zunchao Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huinan Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guofeng Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qilei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo 315000, China
| |
Collapse
|
3
|
Capucciati A, Baraglia L, Cassera E, Merli D, Capaldo L, Ravelli D. Selective Oxidation of Alcohols to Carbonyls Under Decatungstate-Mediated Photoelectrochemical Conditions. Chemistry 2024; 30:e202402986. [PMID: 39301673 DOI: 10.1002/chem.202402986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The oxidation of alcohols to the corresponding carbonyl derivatives has been realized under photoelectrochemical conditions in the presence of tetrabutylammonium decatungstate (TBADT) as the homogeneous photocatalyst. The protocol can be applied to both primary and secondary, benzylic and aliphatic alcohols. The desired products are obtained selectively, skipping the need for purposely added chemical oxidants. An in-depth study of photoelectrochemical conditions revealed that the protocol works best under amperostatic conditions in an undivided electrochemical cell irradiated with a 390 nm LED lamp. The comparison with analogous electrochemical and chemical oxidant-promoted photocatalytic transformations demonstrates the superior efficiency and selectivity of the hereby reported photoelectrochemical conditions.
Collapse
Affiliation(s)
- Andrea Capucciati
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Baraglia
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Elena Cassera
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Daniele Merli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Capaldo
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma., Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
4
|
Zhang Z, Lv Y, Ji L, Chen P, Han S, Zhu Y, Li L, Jia Z, Loh TP. Triaryl Carbenium Ion Pair Mediated Electrocatalytic Benzylic C-H Oxygenation in Air. Angew Chem Int Ed Engl 2024; 63:e202406588. [PMID: 38664822 DOI: 10.1002/anie.202406588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 06/05/2024]
Abstract
The selective oxidation of benzylic C-H bonds is a pivotal transformation in organic synthesis. Undoubtedly, achieving efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes has been highly challenging due to the propensity of benzaldehyde to undergo overoxidation under typical aerobic conditions. Herein, we propose an innovative approach to address this issue by leveraging electrocatalytic processes, facilitated by ion-pair mediators [Ph3C]+[B(C6F5)4]-. By harnessing the power of electrochemistry, we successfully demonstrated the effectiveness of our strategy, which enables the selective oxidation of benzylic C-H bonds in benzylic molecules and toluene derivatives. Notably, our approach exhibited high efficiency, excellent selectivity, and compatibility with various functional groups, underscoring the broad applicability of our methodology.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Yongheng Lv
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Shuyan Han
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Yufei Zhu
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Lanyang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenhua Jia
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Teck-Peng Loh
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
6
|
Cui J, Niu KK, Zhang RZ, Liu H, Yu S, Xing LB. Photocatalytic selective oxidation of toluene under encapsulated air conditions. Chem Commun (Camb) 2024; 60:4310-4313. [PMID: 38533635 DOI: 10.1039/d4cc00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Benzaldehydes are indispensable building blocks in chemistry. However, the selective oxidation of toluene to benzaldehyde remains an ongoing challenge due to the low oxidation potential of benzaldehyde compared to toluene. We report herein a mild protocol that combines hydrogen atom transfer (HAT) with encapsulated air conditions and suitable catalyst loading for selective oxidation of toluene with high selectivity as well as good functional-group tolerance and a broad substrate scope for the synthesis of various high-value aromatic aldehydes. Moreover, the compatibility of this reaction with toluene derivatives of bioactive molecules further demonstrated the practicality of this approach. Mechanism studies have demonstrated that the collaboration between the oxygen quantity and the HAT catalytic system has a major impact on the high selectivity of the reaction. This study not only showcases the effectiveness of HAT strategies toward selective oxidation of toluene to benzaldehyde, but also provides an approach to controlling the selectivity of HAT reactions.
Collapse
Affiliation(s)
- Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
7
|
Meng X, Dong Y, Liu Q, Wang W. Organophotocatalytic α-deuteration of unprotected primary amines via H/D exchange with D 2O. Chem Commun (Camb) 2024; 60:296-299. [PMID: 38054348 PMCID: PMC10872390 DOI: 10.1039/d3cc04634f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report a straightforward H/D exchange method for the synthesis of α-deuterated primary amines from a diverse set of primary amines with high levels of deuteration and chemo- and site selectivity and preparative utility. This cost-effective strategy enables the direct conversion of primary amines to α-deuterated counterparts using D2O as the deuterium source under mild reaction conditions without requiring additional functionality manipulation and with minimal byproduct production.
Collapse
Affiliation(s)
- Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yue Dong
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Qiangqiang Liu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of Arizona, USA
- University of Arizona Cancer Centre, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721-0207, USA
| |
Collapse
|
8
|
Tan H, Zhang C, Deng Y, Zhang M, Cheng X, Wu J, Zheng D. Photoinduced Radical Sulfinylation of C(sp 3)-H Bonds with Sulfinyl Sulfones. Org Lett 2023; 25:2883-2888. [PMID: 37052454 DOI: 10.1021/acs.orglett.3c00868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A direct C(sp3)-H sulfinylation reaction of alkanes with sulfinyl sulfones via decatungstate photocatalysis is reported. The sulfinyl sulfones generated in situ from sulfinates in the presence of an acylating reagent were able to trap the alkyl radicals that were produced via the photoinduced direct hydrogen atom transfer of alkanes, leading to a range of sulfoxides. This radical sulfinylation process provides an efficient and concise method for the synthesis of sulfoxides from abundant alkanes under mild conditions. Using the same strategy, aldehydes can also be transferred to the corresponding sulfoxides via decarbonylative sulfinylation.
Collapse
Affiliation(s)
- Heping Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Changmei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Yangling Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Mengxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Xiya Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Danqing Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
9
|
Zhang Y, Wang H, Jiang D, Sun N, He W, Zhao L, Qin N, Zhu N, Fang Z, Guo K. Photomediated core modification of diaryl dihydrophenzines through three-component alkylarylation of alkenes toward organocatalyzed ATRP. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Dual photoredox and cobalt catalysis enpowers site-selective allylic amination. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Qin L, Zhang X, Sun H, Duan X, Liu J, Wu M, Yuan X, Qiu J, Guo K. Visible-light-induced decarboxylative alkynylation of carboxylic acids in batch and continuous flow. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Liang D, Xiao W, Lakhdar S, Chen J. Construction of axially chiral compounds via catalytic asymmetric radical reaction. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Dong Y, Li X, Ji P, Gao F, Meng X, Wang W. Synthesis of C-1 Deuterated 3-Formylindoles by Organophotoredox Catalyzed Direct Formylation of Indoles with Deuterated Glyoxylic Acid. Org Lett 2022; 24:5034-5039. [PMID: 35799325 DOI: 10.1021/acs.orglett.2c01768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct formylation of feedstock indoles with newly developed, cost-effective deuterated glyoxylic acid as formylation agent under visible light and air (O2) as terminal oxidant has been developed. An isatin byproduct produced from the corresponding indole reactant serves as a facilitator for the formylation process. The simple, mild, metal- and oxidant-free protocol enables the synthesis of structurally diverse C1-deuterated 3-formylindoles with broad functional group tolerance and late-stage functionalization at a high level of D-incorporation (95-99%).
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiangmin Li
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Peng Ji
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|