1
|
Zhang Y, Zhou G, Liu S, Shen X. Radical Brook rearrangement: past, present, and future. Chem Soc Rev 2025; 54:1870-1904. [PMID: 39835385 DOI: 10.1039/d4cs01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Brook rearrangement has emerged as one of the most pivotal transformations in organic chemistry, with broad applications spanning organic synthesis, drug design, and materials science. Since its discovery in the 1950s, the anion-mediated Brook rearrangement has been extensively studied, laying the groundwork for the development of numerous innovative reactions. In contrast, the radical Brook rearrangement has garnered comparatively less attention, primarily due to the challenges associated with the controlled generation of alkoxyl radicals under mild conditions. However, recent advancements in visible-light catalysis and transition-metal catalysis have positioned the radical Brook rearrangement as a promising alternative synthetic strategy in organic synthesis. Despite these developments, significant limitations and challenges remain, warranting further investigation. This review provides an overview of the radical Brook rearrangement, tracing its development from past to present, and offers perspectives on future directions in the field to inspire the creation of novel synthetic tools based on this transformation.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Gang Zhou
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| |
Collapse
|
2
|
Dharavath P, Vaggu R, Manda R, Grée R, Das S. Visible-Light-Induced Insertion of Siloxycarbene into Amide N-H Bonds: Synthesis of Carbinolamides from Acylsilanes and Amides. J Org Chem 2025; 90:1727-1732. [PMID: 39831927 DOI: 10.1021/acs.joc.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The insertion of carbene into secondary amide N-H bonds remains underexplored in organic synthesis. In this work, we discovered the visible-light-induced insertion of siloxycarbene into amide N-H bonds. This metal-free, facile reaction proceeds with atom economy under mild conditions with a broad range of secondary N-H amides, including benzanilide, acetanilide, oxindole, isatin, quinolinone, and maleimide, affording stable N- and O-acetals in excellent isolated yields. In addition, the chemoselective insertion reveals the robustness of this chemical transformation.
Collapse
Affiliation(s)
- Praveen Dharavath
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Vaggu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh Manda
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - René Grée
- Institute for Chemical Sciences in Rennes, University of Rennes, CNRS UMR 6226, 35000 Rennes, France
| | - Saibal Das
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Xie ZY, Li QQ, Liu Y, Cai BG, Xuan J. Photoinduced Asymmetric Formal Siloxycarbene Insertion into sp 3 C-H Bonds Enabled by Chiral Phosphoric Acid. Org Lett 2024; 26:5827-5832. [PMID: 38954473 DOI: 10.1021/acs.orglett.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We disclosed herein an enantioselective formal siloxycarbene insertion reaction enabled by chiral phosphoric acid and blue LED irradiation. This is the first time the asymmetric siloxycarbene insertion into an sp3 C-H bond under transition-metal free conditions has been realized. The reaction features good isolated yields (up to 92%), high enantioselectivity (up to 99:1 er), mild reaction conditions, and good compatibility. Moreover, this method also provides a green and efficient method to construct a chiral quaternary carbon center.
Collapse
Affiliation(s)
- Zi-Yi Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Qiang-Qiang Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yang Liu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
4
|
Zhang W, Yang DN, Guo DD, Wang P, Han MY. Chemoselective Synthesis of Unsymmetrical Dithioacetals through Sequential Carbene Insertion and Acetal Exchange of Acylsilanes and Thiols under Visible Light Irradiation. Org Lett 2024; 26:1282-1286. [PMID: 38301045 DOI: 10.1021/acs.orglett.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Dithioacetals are a frequently used motif in synthetic organic chemistry, and most existing reports discuss only symmetrical dithioacetals. Examples of unsymmetrical dithioacetals are scarce, and few general methods for the selective synthesis of these compounds exists. An intriguing visible-light-induced strategy has been established in this work for sequential reactions of S-H insertion and acetal exchange between acylsilanes and two different thiols that deliver a wide variety of unsymmetrical dithioacetals in moderate yields. The unsymmetrical dithioacetals were obtained with high selectivity, and a great variety of functional groups were tolerated.
Collapse
Affiliation(s)
- Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Dan-Ni Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Dou-Dou Guo
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Peng Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|
5
|
Zhao W, He Z, Yang X, Yu Y, Baell JB, Huang F. Visible-Light-Induced Synthesis of 3-Alkyl Chromones under Catalyst- and Additive-Free Conditions. J Org Chem 2023; 88:13634-13644. [PMID: 37679947 DOI: 10.1021/acs.joc.3c01339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we reported an efficient and facile visible-light-induced 3-alkyl chromone synthesis from easily accessible o-hydroxyaryl enaminones and α-diazo esters. In this protocol, excellent yields were obtained with a broad substrate scope at room temperature, tolerating various functional groups. Of note is that this eco-friendly methodology features catalyst- and additive-free, mild reaction conditions, simple operation procedure, and easy scale-up, which affords a convenient pathway for the preparation of 3-alkyl chromones. Experimental results and density functional theory (DFT) computation analyses confirm the participation of carbene species and active cyclopropane intermediate.
Collapse
Affiliation(s)
- Wei Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaohui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Zhou G, Guo Z, Shen X. Electron-Rich Oxycarbenes: New Synthetic and Catalytic Applications beyond Group 6 Fischer Carbene Complexes. Angew Chem Int Ed Engl 2023; 62:e202217189. [PMID: 36594672 DOI: 10.1002/anie.202217189] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Oxycarbenes have emerged as useful intermediates in synthetic chemistry. Compared to the widely studied oxycarbene metal complexes bearing Group 6 metals, the synthetic and catalytic applications of oxycarbenes beyond Group 6 Fischer carbene complexes are less explored because of the difficulty in controlling their reactivity and the need to use a stoichiometric amount of a presynthesized Group 6 metal carbene complex as the starting material. This Minireview summarizes early synthetic and catalytic applications of late-transition-metal oxycarbene complexes and highlights recent advances in free oxycarbene reactions and transition-metal-catalyzed reactions involving oxycarbenes. We hope this Minireview will inspire further developments in this emerging area.
Collapse
Affiliation(s)
- Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
7
|
Cai BG, Li Q, Xuan J. Copper-catalyzed 2,3-dihydro-1,2,4-triazoles synthesis through [3+2]-cycloaddition of nitrile ylides with azodicarboxylates. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
9
|
Peng CC, Long F, Zhang KY, Hu YC, Wu LJ. Copper(I)-Catalyzed Cross-Coupling of Arylsulfonyl Radicals with Diazo Compounds: Assembly of Arylsulfones. J Org Chem 2022; 87:12265-12273. [PMID: 36037316 DOI: 10.1021/acs.joc.2c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel copper-catalyzed cross-coupling of arylsulfonyl radicals with diazo compounds is described for the synthesis of various arylsulfones under mild conditions. In this reaction, the cheap, environmentally friendly, and readily available inorganic K2S2O5 is employed as the sulfur dioxide source for providing arylsulfonyl radicals. In addition, a radical mechanism involving the insertion of sulfur dioxide with aryl radicals followed by the coupling of arylsulfonyl radicals with copper carbenes is proposed.
Collapse
Affiliation(s)
- Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Hunan Cuisine, ChangSha Commerce & Tourism College, Changsha 410116, China
| | - Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yun-Chu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Dong Y, Li X, Ji P, Gao F, Meng X, Wang W. Synthesis of C-1 Deuterated 3-Formylindoles by Organophotoredox Catalyzed Direct Formylation of Indoles with Deuterated Glyoxylic Acid. Org Lett 2022; 24:5034-5039. [PMID: 35799325 DOI: 10.1021/acs.orglett.2c01768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct formylation of feedstock indoles with newly developed, cost-effective deuterated glyoxylic acid as formylation agent under visible light and air (O2) as terminal oxidant has been developed. An isatin byproduct produced from the corresponding indole reactant serves as a facilitator for the formylation process. The simple, mild, metal- and oxidant-free protocol enables the synthesis of structurally diverse C1-deuterated 3-formylindoles with broad functional group tolerance and late-stage functionalization at a high level of D-incorporation (95-99%).
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiangmin Li
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Peng Ji
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|