1
|
Bidusenko IA, Schmidt EY, Kvashnina AA, Ushakov IA, Trofimov BA. Base-Mediated Synthesis of Polysubstituted Pyrroles from N-Allyl Ketimines and Alkynes: Interplay of Carbanions. Org Lett 2025; 27:5521-5525. [PMID: 40391395 DOI: 10.1021/acs.orglett.5c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Terminal (het)arylacetylenes react (KOBut/DMSO, 60 °C, 1 h) with N-allyl ketimines to afford 2-(het)aryl-4-(het)arylmetyl-5-ethylpyrroles in up to 71% yield as a result of the interaction of acetylenic and azadienic carbanions with C=N and C≡C bonds. This new reaction opens a one-pot access to synthetically and pharmaceutically prospective compounds.
Collapse
Affiliation(s)
- Ivan A Bidusenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Elena Yu Schmidt
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Anastasia A Kvashnina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Igor A Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| |
Collapse
|
2
|
Chakraborty S, Singha Mohapatra A, Saha S, Mandal S, Paul ND. Ligand Assisted Co(II)-Catalyzed Multicomponent Synthesis of Substituted Pyrroles and Pyridines. Chem Asian J 2025; 20:e202401038. [PMID: 39714368 DOI: 10.1002/asia.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/23/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
Herein, we describe a sustainable Co(II)-catalyzed synthesis of pyrroles and pyridines. Using a Co(II)-catalyst [CoII 2(La)2Cl2] (1 a) bearing redox-active 2-(phenyldiazenyl)-1,10-phenanthroline) (La) scaffold, various substituted pyrroles and pyridines were synthesized in good yields, taking alcohol as one of the primary feedstock. Pyrroles were synthesized by the equimolar reaction of 2-amino and secondary alcohols. A series of 2,4,6-substituted symmetrical pyridines were prepared via a three-component reaction of NH4OAc with 1 : 2.2 molar primary and secondary alcohols, respectively. Unsymmetrically substituted 2,4,6-trisubstituted, 2,4,5,6-tetrasubstituted, and 2,3,4,5,6-pentasubstituted pyridines were achieved via a multi-component coupling reaction of alcohols and NH4OAc. Catalyst 1 a showed encouraging results during the gram-scale synthesis of these N-heterocycles. Mechanistic investigation revealed synergistic involvement of cobalt metal and the ligand during the catalytic reactions.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Arijit Singha Mohapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Subhangi Saha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Sutanuva Mandal
- Department of Chemistry, Banwarilal Bhalotia College, Ushagram, Asansol, West Bengal, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| |
Collapse
|
3
|
Pal K, Dash OP, Volla CMR. Rhodium/selenium dual catalysis for accessing 2-aminopyrroles from N-sulfonyl-1,2,3-triazoles. Chem Commun (Camb) 2025; 61:3872-3875. [PMID: 39930873 DOI: 10.1039/d4cc06346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Herein, we report a novel rhodium/selenium dual catalytic process for the synthesis of 2-aminopyrroles from N-sulfonyl-1,2,3-triazoles. The proposed cooperative catalytic mechanism involves Rh(II)-catalyzed formation of Rh-azavinyl carbene from triazole, followed by selenium-catalyzed generation of ylide, which subsequently undergoes annulation with another Rh-azavinyl carbene. The simple and mild dual catalytic strategy accommodates a variety of electron-withdrawing and electron-donating functional groups, affording various 2-aminopyrrole derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Om Prakash Dash
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
4
|
Khuntia R, Maity D, Chandra Pan S. Catalytic Asymmetric De Novo Synthesis of Chiral Pyrroles Through Desymmetrizing Oxidative [3+2]-Cycloaddition and the Van Leusen Reaction. Chemistry 2025; 31:e202404511. [PMID: 39910876 DOI: 10.1002/chem.202404511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 02/07/2025]
Abstract
Central chirality in heteroarene derivatives arising from unsymmetrically substituted heteroarene rings is an intriguing but underexplored topic. Herein, we reported the first catalytic enantioselective de novo construction of centrally chiral pyrroles through desymmetrizing oxidative [3+2]-cycloaddition by employing silver catalysis. This judicious desymmetrization can produce at least four continuous stereogenic centers without creating any additional stereocenter. Furthermore, to introduce a more diverse set of substituents, we developed the first catalytic asymmetric Van Leusen reaction with α-substituted TosMIC for the synthesis of centrally chiral pyrroles. A wide range of polycyclic 2-substituted, 3,4-fused pyrroles were obtained in high yields and with good to high enantioselectivities. This report includes the elaboration of methanobenzo[f]isoindole to synthetically challenging building block chiral isoindole compounds, which are synthesized enantioselectively for the first time.
Collapse
Affiliation(s)
- Rupkumar Khuntia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Diptendu Maity
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
5
|
Saha SK, Bera A, Kumari A, Shukla K, Rana NK. Highly Diastereoselective Synthesis of 2,3-Dihydropyrroles via Formal [4 + 1] Annulation Reaction of α,β-Unsaturated Imines and in Situ Generated Pyridinium Ylide. J Org Chem 2025; 90:853-862. [PMID: 39705012 DOI: 10.1021/acs.joc.4c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We report a cascade approach for the synthesis of 2,3-dihydropyrroles derivatives via a formal [4 + 1] annulation reaction of α,β-unsaturated imines with in situ generated pyridinium ylides. Importantly, this protocol is compatible with diverse substituted imines as well as pyridinium ylides, constructing 2,3-dihydropyrroles with excellent yield and selectivity. Thereafter, the Merrifield resin-supported pyridinium ylide as a potential C1 synthon was also employed in our strategy and reused several times, resulting in products with excellent yield and diastereoselectivity.
Collapse
Affiliation(s)
- Suman K Saha
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| | - Anupriya Bera
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| | - Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| | - Khyati Shukla
- Department of Chemistry, Amity School of Applied Sciences (ASAS) Mumbai, Maharashtra 410206, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| |
Collapse
|
6
|
Rusu A, Oancea OL, Tanase C, Uncu L. Unlocking the Potential of Pyrrole: Recent Advances in New Pyrrole-Containing Compounds with Antibacterial Potential. Int J Mol Sci 2024; 25:12873. [PMID: 39684580 PMCID: PMC11640851 DOI: 10.3390/ijms252312873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Nitrogen heterocycles are valuable structural elements in the molecules of antibacterial drugs approved and used to treat bacterial infections. Pyrrole is a five-atom heterocycle found in many natural compounds with biological activity, including antibacterial activity. Numerous compounds are being develop based on the pyrrole heterocycle as new potential antibacterial drugs. Due to the phenomenon of antibacterial resistance, there is a continuous need to create new effective antibacterials. In the scientific literature, we have identified the most relevant studies that aim to develop new compounds, such as pyrrole derivatives, that are proven to have antibacterial activity. Nature is an endless reservoir of inspiration for designing new compounds based on the structure of pyrrole heterocycles such as calcimycin, lynamycins, marinopyrroles, nargenicines, phallusialides, and others. However, many other synthetic compounds based on the pyrrole heterocycle have been developed and can be optimized in the future. The identified compounds were classified according to the type of chemical structure. The chemical structure-activity relationships, mechanisms of action, and antibacterial effectiveness of the most valuable compounds were highlighted. This review highlights scientific progress in designing new pyrrole-containing compounds and provides examples of lead compounds that can be successfully optimized further.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Livia Uncu
- Scientific Center for Drug Research, Pharmaceutical and Toxicological Chemistry Department, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Bd. Stefan Cel Mare si Sfant, MD-2004 Chisinau, Moldova;
| |
Collapse
|
7
|
Li X, Liu Y, Wan JP. Cascade [3 + 2] Annulation of 1,3-Dicarbonyl Compounds and Ethyl Secondary Amines for Pyrrole Synthesis via Poly C(sp 3)-H Bond Functionalization. J Org Chem 2024; 89:16049-16054. [PMID: 39432888 DOI: 10.1021/acs.joc.4c02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The synthesis of polyfunctionalized pyrroles via the cascade reactions of 1,3-dicarbonyl compounds and two molecules of ethyl secondary amines has been realized via simple iodine catalysis in the presence of Dess-Martin periodinane (DMP). The formation of the target pyrrole products involves the formation of one new C-C and two new C-N bonds via the major functionalization of six C(sp3)-H bonds, presenting a highly novel and efficient synthetic protocol toward pyrrole scaffolds.
Collapse
Affiliation(s)
- Xiuli Li
- Institute of Flow Chemistry and Engineering, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- Institute of Flow Chemistry and Engineering, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- Institute of Flow Chemistry and Engineering, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
8
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
9
|
Shu L, Lv Y, Chen Z, Huang Y, Zhang M, Jin Z, Li T, Chi YR. Design, synthesis and Anti-PVY activity of planar chiral thiourea derivatives incorporated with [2.2]Paracyclophane. PEST MANAGEMENT SCIENCE 2024; 80:4450-4458. [PMID: 38662600 DOI: 10.1002/ps.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Potato virus Y (PVY) is a prominent representative of plant viruses. It can inflict severe damage upon Solanaceae plants, leading to global dissemination and substantial economic losses. To discover new antiviral agents, a class of planar chiral thiourea molecules through the key step of N-heterocyclic carbene-catalyzed nitrile formation reaction was synthesized with excellent optical purities for antiviral evaluations against plant virus PVY. RESULTS The absolute configurations of the planar chiral compounds exhibited obvious distinctions in the anti-PVY activities. Notability, compound (S)-4u exhibited remarkable curative activities against PVY, with a half maximal effective concentration (EC50) of 349.3 μg mL-1, which was lower than that of the ningnanmycin (NNM) (EC50 = 400.8 μg mL-1). Additionally, The EC50 value for the protective effects of (S)-4u was 146.2 μg mL-1, which was superior to that of NNM (276.4 μg mL-1). Furthermore, the mechanism-of-action of enantiomers of planar chiral compound 4u was investigated through molecular docking, defensive enzyme activity tests and chlorophyll content tests. CONCLUSION Biological mechanism studies have demonstrated that the configuration of planar chiral target compounds plays a crucial role in the molecular interaction with PVY-CP, enhancing the activity of defense enzymes and affecting chlorophyll content. The current study has provided significant insights into the roles played by planar chiralities in plant protection against viruses. This paves the way for the development of novel green pesticides bearing planar chiralities with excellent optical purities. © 2024 Society of Chemical Industry.
Collapse
Grants
- RG7/20 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2018-T3-1-003 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- QianjiaoheKY(2020)004 Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
- 2022YFD1700300 National Key Research and Development Program of China
- 111Program, D20023 the Program of Introducing Talents of Discipline to Universities of China
- GuidaTegangHezi(2023)23 Natural Science Foundation of Guizhou University
- [2019]1020 the Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2021]Key033 the Science and Technology Department of Guizhou Province
- 32172459 National Natural Science Foundation of China
- 21961006 National Natural Science Foundation of China
- 22371057 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Liangzhen Shu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ya Lv
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhongyin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Bag D, Saini S, Rathod MS, Sawant SD. Divergent Synthesis of Unsymmetrical Bis-heteroaryl Ketones via Base-Promoted Cascade Reactions of 1,2-Alkynedione-Derived N-Propargylic β-Enaminones. J Org Chem 2024; 89:11665-11670. [PMID: 39106037 DOI: 10.1021/acs.joc.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Herein we disclose a transition-metal-free, one-pot two-step strategy for the synthesis of unsymmetrical bis-heteroaryl ketones. N-propargylic β-enaminones generated by the Michael addition of propargylamines onto heteroaryl 1,2-alkynediones have been utilized as synthetic equivalents of pyridine or pyrrole scaffolds. The use of alcohol as a solvent resulted in the formation of 2-alkoxylated pyridine scaffold, whereas the use of DMSO promoted the formation of a pyrrole motif.
Collapse
Affiliation(s)
- Debojyoti Bag
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sheetal Saini
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Mahesh S Rathod
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Sanghapal D Sawant
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Manya BS, Kumar MRP, Rajagopal K, Hassan MA, Rab SO, Alshehri MA, Emran TB. Insights into the Biological Activities and Substituent Effects of Pyrrole Derivatives: The Chemistry-Biology Connection. Chem Biodivers 2024; 21:e202400534. [PMID: 38771305 DOI: 10.1002/cbdv.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Pyrrole, with its versatile heterocyclic ring structure, serves as a valuable template for generating a diverse range of lead compounds with various pharmacophores. Researchers and scientists globally are intrigued by pyrrole and its analogs for their broad pharmacological potential, prompting thorough investigations aimed at advancing human welfare. This comprehensive review delves into the diverse activities exhibited by pyrrole compounds, encompassing their synthesis, reactions, and pharmacological properties alongside their derivatives. In addition to detailing the characteristics of pyrrole and its derivatives within the context of green chemistry, the review also examines microwave-assisted reactions. It provides insights into their chemical structures, natural occurrences, and potential applications across various domains. Furthermore, the article investigates structural alterations of pyrrole compounds and their implications on their functionality, highlighting their versatility as foundational elements for both functional materials and bioactive compounds. The review emphasizes the need for ongoing research and development in the field of pyrrole compounds to discover new activities and benefits.
Collapse
Affiliation(s)
- B S Manya
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - M R Pradeep Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Md Abul Hassan
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
12
|
Mandal PK, Patel S, Katukojvala S. Enal-azomethine ylides: application in the synthesis of functionalized pyrroles. Org Biomol Chem 2024; 22:5734-5738. [PMID: 38953694 DOI: 10.1039/d4ob00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Rhodium-catalyzed [3 + 2] annulation of diazoenals and N-alkyl imines resulted in N-alkyl-pyrrole-3-carbaldehyde derivatives. The reaction involves thermal 6π-electrocyclization and aromatization of a new class of enal-azomethine ylides (EAYs). The EAYs derived from dihydroisoquinoline and 2H-azirine gave fused-pyrrole and pyridine derivatives, respectively. The synthetic importance of pyrrole products has been demonstrated by one-step synthesis of the biologically relevant pyrrolo[3,2-c]quinoline scaffold as well as pyrrolo[2,1-a]isoquinoline which is a core structure of lamellarin alkaloids.
Collapse
Affiliation(s)
- Pratap Kumar Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| | - Sandeep Patel
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| | - Sreenivas Katukojvala
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| |
Collapse
|
13
|
Wang X, Lv R, Li X. Kinetic resolution of 1-(1-alkynyl)cyclopropyl ketones via gold-catalyzed divergent (4 + 4) cycloadditions: stereoselective access to furan fused eight-membered heterocycles. Chem Sci 2024; 15:9361-9368. [PMID: 38903218 PMCID: PMC11186327 DOI: 10.1039/d4sc02763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Chiral eight-membered heterocycles comprise a diverse array of natural products and bioactive compounds, yet accessing them poses significant challenges. Here we report a gold-catalyzed stereoselective (4 + 4) cycloaddition as a reliable and divergent strategy, enabling readily accessible precursors (anthranils and ortho-quinone methides) to be intercepted by in situ generated gold-furyl 1,4-dipoles, delivering previously inaccessible chiral furan/pyrrole-containing eight-membered heterocycles with good results (56 examples, all >20 : 1 dr, up to 99% ee). Moreover, we achieve a remarkably efficient kinetic resolution (KR) process (s factor up to 747). The scale-up synthesis and diversified transformations of cycloadducts highlight the synthetic potential of this protocol. Computational calculations provide an in-depth understanding of the stereoselective cycloaddition process.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- Suzhou Research Institute of Shandong University NO. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 China
| |
Collapse
|
14
|
Tian Y, Liu L, Zeng T, Wu Q, Li B. Skeletal Rearrangement of Oxazole to Azepine and Pyrrole through Dynamic 8π Electrocyclizations. Org Lett 2024; 26:4183-4188. [PMID: 38742794 DOI: 10.1021/acs.orglett.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We present a novel approach for the skeletal rearrangement of an oxazole into an azepine and pyrrole through a dynamic electrocyclization process, showing an innovative, unconventional reaction sequence. This method enables precise control of regioselectivity in competitive 6π and 8π electrocyclization reactions, rendering the final products rich in functional groups that can be further developed for the synthesis of nitrogen-containing scaffolds. This is an unprecedented example of the selective synthesis of seven- and five-member heterocycles via dynamic electrocyclization ring opening or closure.
Collapse
Affiliation(s)
- Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Tu Zeng
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Qian Wu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| |
Collapse
|
15
|
Laudage T, Hüsing T, Rühmann B, Beer B, Schmermund L, Sieber V. N-substituted pyrrole carboxylic acid derivatives from 3,4-dihydroxyketons. CHEMSUSCHEM 2024; 17:e202301169. [PMID: 38217857 DOI: 10.1002/cssc.202301169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Since the chemical industry is largely dependent on petrol-based feedstocks, new sources are required for a sustainable industry. Conversion of biomass to high-value compounds provides an environmentally friendly and sustainable approach, which might be a potential solution to reduce petrol-based starting materials. This also applies for N-heterocycles, which are a common structural motif in natural products, pharmaceuticals and functional polymers. The synthesis of pyrroles is a well-studied and established process. Nevertheless, most routes described are not in line with the principles of green and sustainable chemistry and employ harsh reaction conditions and harmful solvents. In this study, 3,4-dihydroxyketons are used as excellent platform chemicals for the production of N-substituted pyrrole-2-carboxylic- and pyrrole-2,5-dicarboxylic acids, as they can be prepared from glucose through the intermediate d-glucarate and converted into pyrrolic acid derivatives under mild conditions in water. The scope of this so far unknown reaction was examined using a variety of primary amines and aqueous ammonium chloride leading to pyrrolic acid derivatives with N-substituents like alkane-, alkene-, phenyl- and alcohol-groups with yields up to 20 %. The combination of both, enzymatic conversion and chemical reaction opens up new possibilities for further process development. Therefore, a continuous chemo-enzymatic system was set up by first employing an immobilized enzyme to catalyze the conversion of d-glucarate to the 3,4-dihydroxyketone, which is further converted to the pyrrolic acid derivatives by a chemical step in continuous flow.
Collapse
Affiliation(s)
- Tatjana Laudage
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Torben Hüsing
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Broder Rühmann
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Barbara Beer
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Luca Schmermund
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, 4072, Australia
| |
Collapse
|
16
|
Huang Y, Peng X, Chen J, Shu L, Zhang M, Jin J, Jin Z, Chi YR. Discovery of Novel Chiral Indole Derivatives Containing the Oxazoline Moiety as Potential Antiviral Agents for Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6979-6987. [PMID: 38520352 DOI: 10.1021/acs.jafc.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 μg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 μg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.
Collapse
Affiliation(s)
- Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinli Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
17
|
Frasca S, Galkin M, Stro̷mme M, Lindh J, Gising J. Toward Biomass-Based Organic Electronics: Continuous Flow Synthesis and Electropolymerization of N-Substituted Pyrroles. ACS OMEGA 2024; 9:13852-13859. [PMID: 38559979 PMCID: PMC10975589 DOI: 10.1021/acsomega.3c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pyrroles are foundational building blocks in a wide array of disciplines, including chemistry, pharmaceuticals, and materials science. Currently sourced from nonrenewable fossil sources, there is a strive to explore alternative and sustainable synthetic pathways to pyrroles utilizing renewable feedstocks. The utilization of biomass resources presents a compelling solution, particularly given that several key bulk and fine chemicals already originate from biomass. For instance, 2,5-dimethoxytetrahydrofuran and aniline are promising candidates for biomass-based chemical production. In this study, we present an innovative approach for synthesizing N-substituted pyrroles by modifying the Clauson-Kaas protocol, starting from 2,5-dimethoxytetrahydrofuran as the precursor. The developed methodology offers the advantage of producing pyrroles under mild reaction conditions with the potential for catalyst-free reactions depending upon the structural features of the substrate. We devised protocols suitable for both continuous flow and batch reactions, enabling the conversion of a wide range of anilines and sulfonamides into their respective N-substituted pyrroles with good to excellent yields. Moreover, we demonstrate the feasibility of depositing thin films of the corresponding polymers onto electrodes through in situ electropolymerization. This innovative application showcases the potential for sustainable, biomass-based organic electronics, thus, paving the way for environmentally friendly advancements in this field.
Collapse
Affiliation(s)
- Serena Frasca
- Nanotechnology and Functional
Materials, Department of Materials Science and Engineering, Ångström
Laboratory, Uppsala University, 751 03Uppsala, Sweden
| | - Maxim Galkin
- Nanotechnology and Functional
Materials, Department of Materials Science and Engineering, Ångström
Laboratory, Uppsala University, 751 03Uppsala, Sweden
| | - Maria Stro̷mme
- Nanotechnology and Functional
Materials, Department of Materials Science and Engineering, Ångström
Laboratory, Uppsala University, 751 03Uppsala, Sweden
| | - Jonas Lindh
- Nanotechnology and Functional
Materials, Department of Materials Science and Engineering, Ångström
Laboratory, Uppsala University, 751 03Uppsala, Sweden
| | - Johan Gising
- Nanotechnology and Functional
Materials, Department of Materials Science and Engineering, Ångström
Laboratory, Uppsala University, 751 03Uppsala, Sweden
| |
Collapse
|
18
|
Qin J, Jiang S, Luo X, Wang T, Liu P, Yuan B, Yan R. I 2-catalyzed synthesis of 3-aminopyrrole with homopropargylic amines and nitrosoarenes. Chem Commun (Camb) 2024. [PMID: 38477099 DOI: 10.1039/d4cc00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The synthesis of 3-aminopyrrole using the amination reagent nitrosoarenes and homopropargylic amines catalyzed by I2 through cyclization and amination has been developed. This protocol features excellent functional group tolerance and mild reaction conditions, yielding 3-aminopyrroles in moderate to good yields without a metal catalyst. This method realizes the construction and amination of the 3-aminopyrroles in which nitrosoarenes serve as the amine source and oxidant.
Collapse
Affiliation(s)
- Jiaze Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shaanxi, China
| | - Bingxiang Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
19
|
Gotsko MD, Saliy IV, Ushakov IA, Sobenina LN, Trofimov BA. Functionalized 2,3'-Bipyrroles and Pyrrolo[1,2- c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide. Molecules 2024; 29:885. [PMID: 38398639 PMCID: PMC10893325 DOI: 10.3390/molecules29040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3'-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. In the t-BuONa/THF system, TosMIC acts in two directions: along with 2,3'-bipyrroles, the unexpected formation of pyrrolo[1,2-c]imidazoles is also observed (products ratio~1:1).
Collapse
Affiliation(s)
| | | | | | | | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; (M.D.G.); (I.V.S.); (I.A.U.); (L.N.S.)
| |
Collapse
|
20
|
Li F, Yang Q, Liu MY, An PX, Du YL, Wang YB. Ag(I)-Mediated Annulation of 2-(2-Enynyl)pyridines and Propargyl Amines to Access 1-(2 H-Pyrrol-3-yl)indolizines. J Org Chem 2024; 89:304-312. [PMID: 38126126 DOI: 10.1021/acs.joc.3c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An effective Ag(I)-mediated annulation of 2-(2-enynyl)pyridines and propargyl amines was developed, unexpectedly affording a broad range of functionalized 1-(2H-pyrrol-3-yl)indolizines in moderate to excellent yields. The developed method is characterized by operational simplicity, ready availability of starting materials, high regioselectivity, and broad substrate scope under mild reaction conditions. The Ag(I)-promoted cyclization of 2-(2-enynyl)pyridines and propargyl amines possibly results in the formation of the spiroindolizine, the ring-opening rearrangement of which may give the 1-(2H-pyrrol-3-yl)indolizine. Furthermore, a gram-scale reaction and synthetic transformations are also studied.
Collapse
Affiliation(s)
- Feng Li
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Qing Yang
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Ming-Yue Liu
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Pei-Xuan An
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Long Du
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Yan-Bo Wang
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
21
|
Li X, Chen XY, Fan BY, Yu Q, Lei J, Xu ZG, Chen ZZ. Metal-Free Catalyzed Oxidation/Decarboxylative [3+2] Cycloaddition Sequences of 3-Formylchromones to Access Pyrroles with Anti-Cancer Activity. Molecules 2023; 28:7602. [PMID: 38005323 PMCID: PMC10673291 DOI: 10.3390/molecules28227602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
An efficient and direct approach to pyrroles was successfully developed by employing 3-formylchromones as decarboxylative coupling partners, and facilitated by microwave irradiation. The protocol utilizes easily accessible feedstocks, a catalytic amount of DBU without any metals, resulting in high efficiency and regioselectivity. Notably, all synthesized products were evaluated against five different cancer cell lines and compound 3l selectively inhibited the proliferation of HCT116 cells with an IC50 value of 10.65 μM.
Collapse
Affiliation(s)
- Xue Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, China
| | - Xing-Yu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Bing-Ying Fan
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Qun Yu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400067, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| |
Collapse
|
22
|
Evans C, Berkey WJ, Jones CW, France S. Zr-Catalyzed Synthesis of Tetrasubstituted 1,3-Diacylpyrroles from N-Acyl α-Aminoaldehydes and 1,3-Dicarbonyls. J Org Chem 2023. [PMID: 37294689 DOI: 10.1021/acs.joc.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A Zr-catalyzed synthesis of tetrasubstituted 1,3-diacylpyrroles is reported that employs the direct use of N-acyl α-aminoaldehydes with 1,3-dicarbonyl compounds. The products were formed in up to 88% yield and shown to be hydrolytically and configurationally stable under the reaction conditions (THF/1,4-dioxane and H2O). The N-acyl α-aminoaldehydes were readily prepared from the corresponding α-amino acids. The reaction tolerates a wide array of substrate types including alkyl-, aryl-, heteroaryl-, and heteroatom-containing groups on the aminoaldehyde side chain. A variety of 1,3-dicarbonyls proved amenable to the reaction along with an aldehyde derived from a l,l-dipeptide, an aldehyde generated in situ, and an N-acylated glucosamine.
Collapse
Affiliation(s)
- Caria Evans
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William J Berkey
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Latest Advances in Highly Efficient Dye-Based Photoinitiating Systems for Radical Polymerization. Polymers (Basel) 2023; 15:polym15051148. [PMID: 36904388 PMCID: PMC10007623 DOI: 10.3390/polym15051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Light-activated polymerization is one of the most important and powerful strategies for fabrication of various types of advanced polymer materials. Because of many advantages, such as economy, efficiency, energy saving and being environmentally friendly, etc., photopolymerization is commonly used in different fields of science and technology. Generally, the initiation of polymerization reactions requires not only light energy but also the presence of a suitable photoinitiator (PI) in the photocurable composition. In recent years, dye-based photoinitiating systems have revolutionized and conquered the global market of innovative PIs. Since then, numerous photoinitiators for radical polymerization containing different organic dyes as light absorbers have been proposed. However, despite the large number of initiators designed, this topic is still relevant today. The interest towards dye-based photoinitiating systems continues to gain in importance, which is related to the need for new initiators capable of effectively initiating chain reactions under mild conditions. In this paper we present the most important information about photoinitiated radical polymerization. We describe the main directions for the application of this technique in various areas. Attention is mainly focused on the review of high-performance radical photoinitiators containing different sensitizers. Moreover, we present our latest achievements in the field of modern dye-based photoinitiating systems for the radical polymerization of acrylates.
Collapse
|