1
|
Ahmad AF, Galassi FM, Burlakoti A, Vaccarezza M, Papa V. Human cerebral blood supply via circulus arteriosus cerebri: A scoping review on its variations and clinical implications. Heliyon 2024; 10:e32648. [PMID: 38975214 PMCID: PMC11225744 DOI: 10.1016/j.heliyon.2024.e32648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background Circulus arteriosus cerebri (CAC), responsible for supplying blood to the brain, presents anatomical variations that have been associated with both haemorrhagic and ischemic strokes. Therefore, it is crucial to conduct comprehensive investigations and comparisons of the diverse variant components of the CAC, published in various journals, and analyze them to identify individuals at risk of cerebrovascular pathologies, thereby ensuring enhanced and timely treatment. Methods A scoping review according to the five-stage protocol by Arksey and O'Malley was performed between February and June 2023. Seven hundred and seventy-seven records were initially identified, and a total of 51 studies were finally included. Results This scoping review focuses on the anatomical variations of the CAC and their clinical implications on cerebrovascular disease and includes more original articles than review s. Consistent with previous findings, most of the records included small populations or samples, while only three records reported larger populations. Surprisingly, the populations enclosed in the included records consisted of autopsied cadaveric specimens more than living subjects. Finally, the qualitative analysis highlighted three main themes concerning the relationship between the normal CAC morphology and the cerebrovascular disease onset as well as the variant CAC morphology and its main features that might be also involved in these diseases. Finally, techniques that can be used to measure CAC have also been assessed. Conclusion Variations in the CAC, more common in the posterior part, with genetic and environmental factors influencing these variations impact cerebrovascular disorders. Understanding variants components of CAC can aid in improving brain surgeries and post-stroke care.
Collapse
Affiliation(s)
- Adilah F. Ahmad
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth WA, Australia
| | - Francesco M. Galassi
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Arjun Burlakoti
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Mauro Vaccarezza
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth WA, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Perth WA, Australia
- Department of Environmental and Preventive Sciences, University of Ferrara, Ferrara, Italy
| | - Veronica Papa
- Forensic Anthropology, Paleopathology and Bioarchaeology (FAPAB) Research Center, Avola, Italy
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples "Parthenope," Naples, Italy
- School of Science, Engineering and Health, University of Naples "Parthenope," Naples, Italy
| |
Collapse
|
2
|
Awal ZI, Zani MR, Albaruni MASI, Rahman T, Islam MS. A model for SARS-CoV-2 virus transmission on the upper deck of a passenger ship bound for a short trip. Heliyon 2024; 10:e29506. [PMID: 38698983 PMCID: PMC11064074 DOI: 10.1016/j.heliyon.2024.e29506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Public transportation plays a critical role in meeting transportation demands, particularly in densely populated areas. The COVID-19 pandemic has highlighted the importance of public health measures, including the need to prevent the spread of the virus through public transport. The spreading of the virus on a passenger ship is studied using the Computational Fluid Dynamic (CFD) model and Monte Carlo simulation. A particular focus was the context of Bangladesh, a populous maritime nation in South Asia, where a significant proportion of the population utilizes passenger ships to meet transportation demands. In this regard, a turbulence model is used, which simulates the airflow pattern and determines the contamination zone. Parameters under investigation are voyage duration, number of passengers on board, social distance, the effect of surgical masks, and others. This study shows that the transmission rate of SARS-CoV-2 infection on public transport, such as passenger ships, is not necessarily directly proportional to voyage duration or the number of passengers onboard. This model has the potential to be applied in various other modes of transportation, including public buses and airplanes. Implementing this model may help to monitor and address potential health risks effectively in the public transport networks.
Collapse
Affiliation(s)
- Zobair Ibn Awal
- Department of Naval Architecture and Marine Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Rafsan Zani
- Department of Naval Architecture and Marine Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Abu Sina Ibne Albaruni
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Tawhidur Rahman
- Department of Naval Architecture and Marine Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Shariful Islam
- Department of Naval Architecture and Offshore Engineering, Bangabandhu Sheikh Mujibur Rahman Maritime University, Bangladesh (BSMRMU), Dhaka, 1216, Bangladesh
| |
Collapse
|
3
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Feng Y, Luo X, Wei J, Fan Y, Ge J. Evaluating infection risks in buses based on passengers' dynamic temporal and typical spatial scenarios: A case study of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171373. [PMID: 38428616 DOI: 10.1016/j.scitotenv.2024.171373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Conventional buses, as an indispensable part of the urban public transport system, impose cross-infection risks on passengers. To assess differential risks due to dynamic staying durations and locations, this study considered four spatial distributions (i = 1-4) and six temporal scenarios (j = 1-6) of buses. Based on field measurements and a risk assessment approach combining both short-range and room-scale effects, risks are evaluated properly. The results showed that temporal asynchrony between infected and susceptible individuals significantly affects disease transmission rates. The Control Case assumes that infected and susceptible individuals enter and leave synchronously. However, ignoring temporal asynchrony scenarios, i.e., the Control Case, resulted in overestimation (+30.7 % to +99.6 %) or underestimation (-15.2 % to -69.9 %) of the actual risk. Moreover, the relative difference ratios of room-scale risks between the Control Case and five temporal scenarios are impacted by ventilation. Short-range risk exists only if infected and susceptible individuals have temporal overlap on the bus. Considering temporal and spatial asynchrony, a more realistic total reproduction number (R) can be obtained. Subsequently, the total R was assessed under five temporal scenarios. On average, for the Control Case, the total R was estimated to be +27.3 % higher than j = 1, -9.3 % lower than j = 2, +12.8 % higher than j = 3, +33.0 % lower than j = 4, and + 77.6 % higher than j = 5. This implies the need for a combination of active prevention and real-time risk monitoring to enable rigid travel demand and control the spread of the epidemic.
Collapse
Affiliation(s)
- Yinshuai Feng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China; International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Xiaoyu Luo
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China; International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics, Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yifan Fan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China; International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China.
| | - Jian Ge
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China; International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| |
Collapse
|
5
|
Silva LFO, Li W, Moreno T. Introduction to the special issue on "COVID-19". GEOSCIENCE FRONTIERS 2022; 13:101403. [PMID: 37521132 PMCID: PMC9093084 DOI: 10.1016/j.gsf.2022.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Affiliation(s)
- Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, China
| | - Teresa Moreno
- Institute for Environmental Assessment and Water Research, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Poydenot F, Abdourahamane I, Caplain E, Der S, Haiech J, Jallon A, Khoutami I, Loucif A, Marinov E, Andreotti B. Risk assessment for long- and short-range airborne transmission of SARS-CoV-2, indoors and outdoors. PNAS NEXUS 2022; 1:pgac223. [PMID: 36712338 PMCID: PMC9802175 DOI: 10.1093/pnasnexus/pgac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Preventive measures to reduce infection are needed to combat the COVID-19 pandemic and prepare for a possible endemic phase. Current prophylactic vaccines are highly effective to prevent disease but lose their ability to reduce viral transmission as viral evolution leads to increasing immune escape. Long-term proactive public health policies must therefore complement vaccination with available nonpharmaceutical interventions aiming to reduce the viral transmission risk in public spaces. Here, we revisit the quantitative assessment of airborne transmission risk, considering asymptotic limits that considerably simplify its expression. We show that the aerosol transmission risk is the product of three factors: a biological factor that depends on the viral strain, a hydrodynamical factor defined as the ratio of concentration in viral particles between inhaled and exhaled air, and a face mask filtering factor. The short-range contribution to the risk, present both indoors and outdoors, is related to the turbulent dispersion of exhaled aerosols by air drafts and by convection (indoors), or by the wind (outdoors). We show experimentally that airborne droplets and CO2 molecules present the same dispersion. As a consequence, the dilution factor, and therefore the risk, can be measured quantitatively using the CO2 concentration, regardless of the room volume, the flow rate of fresh air, and the occupancy. We show that the dispersion cone leads to a concentration in viral particles, and therefore a short-range transmission risk, inversely proportional to the squared distance to an infected person and to the flow velocity. The aerosolization criterion derived as an intermediate result, which compares the Stokes relaxation time to the Lagrangian time-scale, may find application for a broad class of aerosol-borne pathogens and pollutants.
Collapse
Affiliation(s)
- Florian Poydenot
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Ismael Abdourahamane
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Elsa Caplain
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Samuel Der
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Jacques Haiech
- Cogitamus Laboratory and CNRS UMR 7242 BSC, 300 Bd Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France
| | - Antoine Jallon
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Inés Khoutami
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Amir Loucif
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Emil Marinov
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Bruno Andreotti
- Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
7
|
Arpino F, Grossi G, Cortellessa G, Mikszewski A, Morawska L, Buonanno G, Stabile L. Risk of SARS-CoV-2 in a car cabin assessed through 3D CFD simulations. INDOOR AIR 2022; 32:e13012. [PMID: 35347787 PMCID: PMC9111293 DOI: 10.1111/ina.13012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 05/26/2023]
Abstract
In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero-dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment.
Collapse
Affiliation(s)
- Fausto Arpino
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Giorgio Grossi
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Gino Cortellessa
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Alex Mikszewski
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Lidia Morawska
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Giorgio Buonanno
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Luca Stabile
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| |
Collapse
|