1
|
Li Z, Sun X. Epigenetic regulation in liver regeneration. Life Sci 2024; 353:122924. [PMID: 39038511 DOI: 10.1016/j.lfs.2024.122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The liver is considered unique in its enormous capacity for regeneration and self-repair. In contrast to other regenerative organs (i.e., skin, skeletal muscle, and intestine), whether the adult liver contains a defined department of stem cells is still controversial. In order to compensate for the massive loss of hepatocytes following liver injury, the liver processes a precisely controlled transcriptional reprogram that can trigger cell proliferation and cell-fate switch. Epigenetic events are thought to regulate the organization of chromatin architecture and gene transcription during the liver regenerative process. In this review, we will summarize how changes to the chromatin by epigenetic modifiers are translated into cell fate transitions to restore liver homeostasis during liver regeneration.
Collapse
Affiliation(s)
- Zilong Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China.
| | - Xinyue Sun
- Department of Pharmacology, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Ando Y, Munetsuna E, Yamada H, Ikeya M, Teshigawara A, Kageyama I, Nouchi Y, Wakasugi T, Yamazaki M, Mizuno G, Tsuboi Y, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Impact of maternal fructose intake on liver stem/progenitor cells in offspring: Insights into developmental origins of health and disease. Life Sci 2024; 336:122315. [PMID: 38035994 DOI: 10.1016/j.lfs.2023.122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
AIMS The developmental origin of health and disease (DOHaD) theory postulates that poor nutrition during fetal life increases the risk of disease later in life. Excessive fructose intake has been associated with obesity, diabetes, and nonalcoholic fatty liver disease, and maternal fructose intake during pregnancy has been shown to affect offspring health. In this study, we investigated the effects of high maternal fructose intake on the liver stem/progenitor cells of offspring. MAIN METHOD A fructose-based DOHaD model was established using Sprague-Dawley rats. Small hepatocytes (SHs), which play an important role in liver development and regeneration, were isolated from the offspring of dams that were fed a high-fructose corn syrup (HFCS) diet. The gene expression and DNA methylation patterns were analyzed on postnatal day (PD) 21 and 60. KEY FINDINGS Maternal HFCS intake did not affect body weight or caloric intake, but differences in gene expression and DNA methylation patterns were observed in the SHs of offspring. Functional analysis revealed an association between metabolic processes and ion transport. SIGNIFICANCE These results suggest that maternal fructose intake affects DNA methylation and gene expression in the liver stem/progenitor cells of offspring. Furthermore, the prolonged retention of these changes in gene expression and DNA methylation in adulthood (PD 60) suggests that maternal fructose intake may exert lifelong effects. These findings provide insights into the DOHaD for liver-related disorders and highlight the importance of maternal nutrition for the health of the next generation.
Collapse
Affiliation(s)
- Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Miyuki Ikeya
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho Takamatsu, Kagawa 761-0123, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
3
|
Wang J, Li Q, Li W, Méndez-Sánchez N, Liu X, Qi X. Stem Cell Therapy for Liver Diseases: Current Perspectives. FRONT BIOSCI-LANDMRK 2023; 28:359. [PMID: 38179765 DOI: 10.31083/j.fbl2812359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 01/06/2024]
Abstract
Stem cell therapy offers a promising avenue for advanced liver disease cases as an alternative to liver transplantation. Clinical studies are underway to explore the potential of stem cells from various sources in treating different liver diseases. However, due to the variability among current studies, further validation is needed to ensure the safety and effectiveness of stem cell therapy. To establish a strong foundation for optimal stem cell therapy applications, selection of suitable stem cell sources, standardization of transplantation protocols, and patient criteria are vital. This review comprehensively examines existing literature on stem cell sources, transplantation methods, and patient selection. Additionally, we discuss novel strategies, including stem cell preconditioning, cell-free therapy, genetic modification of stem cells, and the use of liver organoids, addressing the limitations of current stem cell therapies. Nevertheless, these innovative approaches require further validation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Qun Li
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Wenbo Li
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation and Faculty of Medicine, National Autonomous University of Mexico, 14050 Mexico City, Mexico
| | - Xiaofeng Liu
- Department of Gastroenterology, The 960th Hospital of the PLA, 250000 Jinan, Shandong, China
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), 110840 Shenyang, Liaoning, China
| |
Collapse
|
4
|
Toprakhisar B, Verfaillie CM, Kumar M. Advances in Recellularization of Decellularized Liver Grafts with Different Liver (Stem) Cells: Towards Clinical Applications. Cells 2023; 12:301. [PMID: 36672236 PMCID: PMC9856398 DOI: 10.3390/cells12020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Liver transplantation is currently the only curative therapy for patients with acute or chronic liver failure. However, a dramatic gap between the number of available liver grafts and the number of patients on the transplantation waiting list emphasizes the need for valid liver substitutes. Whole-organ engineering is an emerging field of tissue engineering and regenerative medicine. It aims to generate transplantable and functional organs to support patients on transplantation waiting lists until a graft becomes available. It comprises two base technologies developed in the last decade; (1) organ decellularization to generate a three-dimensional (3D) extracellular matrix scaffold of an organ, and (2) scaffold recellularization to repopulate both the parenchymal and vascular compartments of a decellularized organ. In this review article, recent advancements in both technologies, in relation to liver whole-organ engineering, are presented. We address the potential sources of hepatocytes and non-parenchymal liver cells for repopulation studies, and the role of stem-cell-derived liver progeny is discussed. In addition, different cell seeding strategies, possible graft modifications, and methods used to evaluate the functionality of recellularized liver grafts are outlined. Based on the knowledge gathered from recent transplantation studies, future directions are summarized.
Collapse
Affiliation(s)
- Burak Toprakhisar
- Stem Cell Institute, Department of Stem Cell and Developmental Biology, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
5
|
Salah N, Eissa S, Mansour A, El Magd NMA, Hasanin AH, El Mahdy MM, Hassan MK, Matboli M. Evaluation of the role of kefir in management of non-alcoholic steatohepatitis rat model via modulation of NASH linked mRNA-miRNA panel. Sci Rep 2023; 13:236. [PMID: 36604518 PMCID: PMC9816104 DOI: 10.1038/s41598-022-27353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the clinically aggressive variant of non-alcoholic fatty liver disease. Hippo pathway dysregulation can contribute to NASH development and progression. The use of probiotics is effective in NASH management. Our aim is to investigate the efficacy of kefir Milk in NASH management via modulation of hepatic mRNA-miRNA based panel linked to NAFLD/NASH Hippo signaling and gut microbita regulated genes which was identified using bioinformatics tools. Firstly, we analyzed mRNAs (SOX11, SMAD4 and AMOTL2), and their epigenetic regulator (miR-6807) followed by validation of target effector proteins (TGFB1, IL6 and HepPar1). Molecular, biochemical, and histopathological, analyses were used to evaluate the effects of kefir on high sucrose high fat (HSHF) diet -induced NASH in rats. We found that administration of Kefir proved to prevent steatosis and development of the inflammatory component of NASH. Moreover, Kefir improved liver function and lipid panel. At the molecular level, kefir down-regulated the expression of miR 6807-5p with subsequent increase in the expression of SOX 11, AMOTL2 associated with downregulated SMAD4, resulting in reduction in the expression of the inflammatory and fibrotic markers, IL6 and TGF-β1 in the treated and prophylactic groups compared to the untreated rats. In conclusion, Kefir suppressed NASH progression and improved both fibrosis and hepatic inflammation. The produced effect was correlated with modulation of SOX11, SMAD4 and AMOTL2 mRNAs) - (miR-6807-5p) - (TGFB, IL6 and, HepPar1) expression.
Collapse
Affiliation(s)
- Noha Salah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt.
- MASRI institute of research, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Amal Mansour
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Nagwa M Abo El Magd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamel Hassan
- Department of Biology, Faculty of Science, Port Said University, Port Said, Egypt
- Center for Genomics, Helmy Institute for Medical Science, Zewail City for Science & Technology, Giza, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt.
| |
Collapse
|
6
|
Govaere O, Anstee QM. Non-Alcoholic Fatty Liver Disease and Steatohepatitis. ENCYCLOPEDIA OF CELL BIOLOGY 2023:610-621. [DOI: 10.1016/b978-0-12-821618-7.00265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Bai F, Duan J, Yang D, Lai X, Zhu X, He X, Hu A. Integrative network analysis of circular RNAs reveals regulatory mechanisms for hepatic specification of human iPSC-derived endoderm. Stem Cell Res Ther 2022; 13:468. [PMID: 36076262 PMCID: PMC9461288 DOI: 10.1186/s13287-022-03160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cell (hiPSC)-derived functional hepatic endoderm (HE) is supposed to be an alternative option for replacement therapy for end-stage liver disease. However, the high heterogeneity of HE cell populations is still challenging. Hepatic specification of definitive endoderm (DE) is an essential stage for HE induction in vitro. Recent studies have suggested that circular RNAs (circRNAs) determine the fate of stem cells by acting as competing endogenous RNAs (ceRNAs). To date, the relationships between endogenous circRNAs and hepatic specification remain elusive. METHODS The identities of DE and HE derived from hiPSCs were determined by qPCR, cell immunofluorescence, and ELISA. Differentially expressed circRNAs (DEcircRNAs) were analysed using the Arraystar Human circRNA Array. qPCR was performed to validate the candidate DEcircRNAs. Intersecting differentially expressed genes (DEGs) of the GSE128060 and GSE66282 data sets and the DEcircRNA-predicted mRNAs were imported into Cytoscape for ceRNA networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were involved in the enrichment analysis. Hepatic markers and Wnt/β-catenin were detected in hsa_circ_004658-overexpressing cells by western blotting. Dual-luciferase reporter assays were used to evaluate the direct binding among hsa_circ_004658, miRNA-1200 and CDX2. DE cells were transfected with miR-1200 mimics, adenovirus containing CDX2, and Wnt/β-catenin was detected by western blotting. RESULTS hiPSC-derived DE and HE were obtained at 4 and 9 days after differentiation, as determined by hepatic markers. During hepatic specification, 626 upregulated and 208 downregulated DEcircRNAs were identified. Nine candidate DEcircRNAs were validated by qPCR. In the ceRNA networks, 111 circRNA-miRNA-mRNA pairs were involved, including 90 pairs associated with hsa_circ_004658. In addition, 53 DEGs were identified among the intersecting mRNAs of the GSE128060 and GSE66282 data sets and the hsa_circ_004658-targeted mRNAs. KEGG and GO analyses showed that the DEGs associated with hsa_circ_004658 were mainly enriched in the WNT signalling pathway. Furthermore, hsa_circ_004658 was preliminarily verified to promote hepatic specification, as determined by hepatic markers (AFP, ALB, HNF4A, and CK19) (p < 0.05). This promotive effect may be related to the inhibition of the Wnt/β-catenin signalling pathway (detected by β-catenin, p-β-catenin, and TCF4) when hsa_circ_004658 was overexpressed (p < 0.05). Dual-luciferase reporter assays showed that there were binding sites for miR-1200 in the hsa_circ_004658 sequence, and confirmed the candidate DEG (CDX2) as a miR-1200 target. The level of miR-1200 decreased and the level of CDX2 protein expression increased when hsa_circ_004658 was overexpressed (p < 0.05). In addition, the results showed that CDX2 may suppress the Wnt/β-catenin signalling during hepatic specification (p < 0.05). CONCLUSIONS This study analysed the profiles of circRNAs during hepatic specification. We identified the hsa_circ_004658/miR-1200/CDX2 axis and preliminarily verified its effect on the Wnt/β-catenin signalling pathway during hepatic specification. These results provide novel insight into the molecular mechanisms involved in hepatic specification and could improve liver development in the future.
Collapse
Affiliation(s)
- Fang Bai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinliang Duan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Daopeng Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Xingqiang Lai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China. .,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
GITR/GITRL reverse signalling modulates the proliferation of hepatic progenitor cells by recruiting ANXA2 to phosphorylate ERK1/2 and Akt. Cell Death Dis 2022; 13:297. [PMID: 35379781 PMCID: PMC8979965 DOI: 10.1038/s41419-022-04759-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
AbstractHepatic stem/progenitor cells are the major cell compartment for tissue repair when hepatocyte proliferation is compromised in chronic liver diseases, but the expansion of these cells increases the risk of carcinogenesis. Therefore, it is essential to explore the pathways restricting their expansion and abnormal transformation. The ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL) showed the most highly increased expression in hepatic progenitor cells treated with transforming growth factor (TGF)-β1. If overexpressed by hepatic progenitor cells, GITRL stimulated cell proliferation by activating the epithelial–mesenchymal transition pathway and enhancing ERK1/2 and Akt phosphorylation via GITRL binding to ANXA2. However, GITR, the specific GITRL receptor, suppressed the epithelial–mesenchymal transition pathway of GITRL-expressing cells and decreased their growth by dissociating ANXA2 from GITRL and reducing downstream ERK1/2 and Akt phosphorylation. This study identifies GITR/GITRL reverse signalling as a cross-interaction pathway between immune cells and hepatic stem/progenitor cells that restricts the expansion of hepatic stem/progenitor cells and reduces the possibility of carcinogenesis.
Collapse
|
9
|
Fu Q, Liu P, Jin S, Zhang X, Liu C, Hu M, Wang Y, Zhang H, Qin T. A Metastatic Intrahepatic Cholangiocarcinoma With HPCs Features: Report of a Case. Front Oncol 2022; 12:829235. [PMID: 35299731 PMCID: PMC8921981 DOI: 10.3389/fonc.2022.829235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly lethal hepatobiliary neoplasm, which originates from the bile ducts proximal to the second-order division. ICC can be anatomically divided into two subtypes: the large duct type (mucin-production ICC, muc-ICC) and the small duct type (mixed-ICC) origins from hepatic progenitor cells (HPCs). The immunoreactivity of S100P and neural cell adhesion molecule (NCAM) are useful biomarkers to distinguish the two subtypes. In this study, we report a difficult-to-diagnose case of metastatic retroperitoneal tumor of occult hepatolithiasis-associated ICC. Besides, this case was both positive for S100P and NCAM, considered as a rare muc-ICC with the HPCs features. Tumor whole exome sequencing detection results by Genetron (China) revealed that there were 41 gene mutations in this patient. The SMAD4-p.His530ThrfsTer47 and KRAS-p.Gly12Val mutation might promote the occurrence and distant metastasis of the tumor.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Pan Liu
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Shangkun Jin
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Henan University, Zhengzhou, China
| | - Xu Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Chuanjiang Liu
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Mingxing Hu
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China.,Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Henan University, Zhengzhou, China
| | - Yuzhu Wang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China.,Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Henan University, Zhengzhou, China
| | - Hongwei Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Tao Qin
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| |
Collapse
|
10
|
Liver Regeneration and Cell Transplantation for End-Stage Liver Disease. Biomolecules 2021; 11:biom11121907. [PMID: 34944550 PMCID: PMC8699389 DOI: 10.3390/biom11121907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is the only curative option for end-stage liver disease; however, the limitations of liver transplantation require further research into other alternatives. Considering that liver regeneration is prevalent in liver injury settings, regenerative medicine is suggested as a promising therapeutic strategy for end-stage liver disease. Upon the source of regenerating hepatocytes, liver regeneration could be divided into two categories: hepatocyte-driven liver regeneration (typical regeneration) and liver progenitor cell-driven liver regeneration (alternative regeneration). Due to the massive loss of hepatocytes, the alternative regeneration plays a vital role in end-stage liver disease. Advances in knowledge of liver regeneration and tissue engineering have accelerated the progress of regenerative medicine strategies for end-stage liver disease. In this article, we generally reviewed the recent findings and current knowledge of liver regeneration, mainly regarding aspects of the histological basis of regeneration, histogenesis and mechanisms of hepatocytes' regeneration. In addition, this review provides an update on the regenerative medicine strategies for end-stage liver disease. We conclude that regenerative medicine is a promising therapeutic strategy for end-stage liver disease. However, further studies are still required.
Collapse
|
11
|
Kiseleva YV, Antonyan SZ, Zharikova TS, Tupikin KA, Kalinin DV, Zharikov YO. Molecular pathways of liver regeneration: A comprehensive review. World J Hepatol 2021; 13:270-290. [PMID: 33815672 PMCID: PMC8006075 DOI: 10.4254/wjh.v13.i3.270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is a unique parenchymal organ with a regenerative capacity allowing it to restore up to 70% of its volume. Although knowledge of this phenomenon dates back to Greek mythology (the story of Prometheus), many aspects of liver regeneration are still not understood. A variety of different factors, including inflammatory cytokines, growth factors, and bile acids, promote liver regeneration and control the final size of the organ during typical regeneration, which is performed by mature hepatocytes, and during alternative regeneration, which is performed by recently identified resident stem cells called "hepatic progenitor cells". Hepatic progenitor cells drive liver regeneration when hepatocytes are unable to restore the liver mass, such as in cases of chronic injury or excessive acute injury. In liver maintenance, the body mass ratio is essential for homeostasis because the liver has numerous functions; therefore, a greater understanding of this process will lead to better control of liver injuries, improved transplantation of small grafts and the discovery of new methods for the treatment of liver diseases. The current review sheds light on the key molecular pathways and cells involved in typical and progenitor-dependent liver mass regeneration after various acute or chronic injuries. Subsequent studies and a better understanding of liver regeneration will lead to the development of new therapeutic methods for liver diseases.
Collapse
Affiliation(s)
- Yana V Kiseleva
- International School "Medicine of the Future", I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Sevak Z Antonyan
- Department of Emergency Surgical Gastroenterology, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow 129010, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Kirill A Tupikin
- Laboratory of Minimally Invasive Surgery, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery of the Russian Ministry of Healthcare, Moscow 117997, Russia
| | - Yuri O Zharikov
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia.
| |
Collapse
|
12
|
Zhu C, Dong B, Sun L, Wang Y, Chen S. Cell Sources and Influencing Factors of Liver Regeneration: A Review. Med Sci Monit 2020; 26:e929129. [PMID: 33311428 PMCID: PMC7747472 DOI: 10.12659/msm.929129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration (LR) is a set of complicated mechanisms between cells and molecules in which the processes of initiation, maintenance, and termination of liver repair are regulated. Although LR has been studied extensively, there are still numerous challenges in gaining its full understanding. Cells for LR have a wide range of sources and the feature of plasticity, and regeneration patterns are not the same under different conditions. Many patients undergoing partial hepatectomy develop cirrhosis or steatosis. The changes of LR in these cases are not clear. Many types of cells participate in LR. Hepatocytes, biliary epithelial cells, hepatic progenitor cells, and human liver stem cells can serve as the cell sources for LR. However, different types and degrees of damage trigger the response from the most suitable cells. Exploring the cell sources of LR is of great significance for accelerating recovery of liver function under different pathological patterns and developing a cell therapy strategy to cope with the shortage of donors for liver transplantation. In clinical practice, the background of the liver influences regeneration. Fibrosis and steatosis create different LR microenvironments and signal molecule interaction patterns. In addition, factors such as partial hepatectomy, aging, platelets, nerves, hormones, bile acids, and gut microbiota are widely involved in this process. Understanding the influencing factors of LR has practical value for individualized treatment of patients with liver diseases. In this review, we have summarized recent studies and proposed our views. We discuss cell sources and the influential factors on LR to help in solving clinical problems.
Collapse
Affiliation(s)
- Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Leqi Sun
- Department of Oncological Medical Services, Institute of Health Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| | - Yixiu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Shuhai Chen
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University of Graduate School, Tokushima City, Tokushima, Japan
| |
Collapse
|
13
|
Tavares MR, de Castro RVG, Pieri NCG, Cruz NRN, Martins DS, Ambrósio CE, Garcia JM, Camplesi AC, Bressan FF, Toniollo GH. Identification of hepatic progenitor cells in the canine fetal liver. Res Vet Sci 2020; 133:239-245. [PMID: 33032111 DOI: 10.1016/j.rvsc.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/08/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
The liver plays essential roles in human and animal organisms, such as the storage, release, metabolism, and elimination of various endogenous or exogenous substances. Although its vital importance, few treatments are yet available when a hepatic failure occurs, and hence, the use of stem cells has arisen as a possible solution for both human and veterinary medicines. Previous studies have shown the existence of hepatic progenitor cells in human fetuses that were positive for EpCAM and NCAM. There is limited evidence, however, further identification and characterization of these cells in other species. Considering the similarity between dogs and humans regarding physiology, and also the increasing importance of developing new treatments for both veterinary and translational medicine, this study attempted to identify hepatic progenitor cells in canine fetal liver. For that, livers from canine fetuses were collected, cells were isolated by enzymatic digestion and cultured. Cells were characterized regarding morphology and expression of EpCAM, NCAM, Nestin, and Thy-1/CD90 markers. Our results suggest that it is possible to identify hepatic progenitor cells in the canine fetal liver; however, for therapeutic use, further techniques for cellular isolation and culture are necessary to obtain enriched populations of hepatic progenitors from the canine fetal liver.
Collapse
Affiliation(s)
- M R Tavares
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Animal Science, State University of São Paulo, Jaboticabal/SP, Brazil.
| | - R V G de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Animal Science, State University of São Paulo, Jaboticabal/SP, Brazil; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil
| | - N C G Pieri
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil
| | - N R N Cruz
- Department of Veterinary Clinical and Surgery, Faculty of Agricultural and Animal Science, State University of São Paulo, Jaboticabal/SP, Brazil
| | - D S Martins
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil; Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo/SP, Brazil
| | - C E Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil; Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo/SP, Brazil
| | - J M Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Animal Science, State University of São Paulo, Jaboticabal/SP, Brazil
| | - A C Camplesi
- Department of Veterinary Clinical and Surgery, Faculty of Agricultural and Animal Science, State University of São Paulo, Jaboticabal/SP, Brazil
| | - F F Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil; Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo/SP, Brazil..
| | - G H Toniollo
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Animal Science, State University of São Paulo, Jaboticabal/SP, Brazil
| |
Collapse
|
14
|
Wu Y, Min J, Ge C, Shu J, Tian D, Yuan Y, Zhou D. Interleukin 22 in Liver Injury, Inflammation and Cancer. Int J Biol Sci 2020; 16:2405-2413. [PMID: 32760208 PMCID: PMC7378634 DOI: 10.7150/ijbs.38925] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin 22(IL-22), a member of the IL-10 cytokine family and is an emerging CD4+Th cytokine that plays an important role in anti-microbial defense, homeostasis and tissue repair. We are interested in IL-22 as it has the double function of suppressing or encouraging inflammation in various disease models including hepatic inflammation. As a survival factor for hepatocytes, IL-22 plays a protective role in many kinds of liver diseases, such as hepatitis, liver fibrosis, or hepatocellular carcinoma (HCC) by binding to the receptors IL-22R1 and IL-10R2. Overexpression of IL-22 reduces liver fibrosis by attenuating the activation of hepatic stellate cell (the main cell types involved in hepatic fibrosis), and down-regulating the levels of inflammatory cytokines. Administration of exogenous IL-22 increases the replication of hepatocytes by inhibiting cell apoptosis and promoting mitosis, ultimately plays a contributing role in liver regeneration. Furthermore, treatment with IL-22 activates hepatic signal transducer and activator of transcription 3 (STAT3), ameliorates hepatic oxidative stress and alcoholic fatty liver, effectively alleviate the liver damage caused by alcohol and toxicant. In conclusion, the hepatoprotective functions and liver regeneration promoting effect of IL-22 suggests the therapeutic potential of IL-22 in the treatment of human hepatic diseases.
Collapse
Affiliation(s)
- Ye Wu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jie Min
- The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Chang Ge
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Jinping Shu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Di Tian
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yuan Yuan
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Dian Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
15
|
Abu Rmilah AA, Zhou W, Nyberg SL. Hormonal Contribution to Liver Regeneration. Mayo Clin Proc Innov Qual Outcomes 2020; 4:315-338. [PMID: 32542223 PMCID: PMC7283948 DOI: 10.1016/j.mayocpiqo.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
An understanding of the molecular basis of liver regeneration will open new horizons for the development of novel therapies for chronic liver failure. Such therapies would solve the drawbacks associated with liver transplant, including the shortage of donor organs, long waitlist time, high medical costs, and lifelong use of immunosuppressive agents. Regeneration after partial hepatectomy has been studied in animal models, particularly fumarylacetoacetate hydrolase-deficient (FAH -/-) mice and pigs. The process of regeneration is distinctive, complex, and well coordinated, and it depends on the interplay among several signaling pathways (eg, nuclear factor κβ, Notch, Hippo), cytokines (eg, tumor necrosis factor α, interleukin 6), and growth factors (eg, hepatocyte growth factor, epidermal growth factor, vascular endothelial growth factor), and other components. Furthermore, endocrinal hormones (eg, norepinephrine, growth hormone, insulin, thyroid hormones) also can influence the aforementioned pathways and factors. We believe that these endocrinal hormones are important hepatic mitogens that strongly induce and accelerate hepatocyte proliferation (regeneration) by directly and indirectly triggering the activity of the involved signaling pathways, cytokines, growth factors, and transcription factors. The subsequent induction of cyclins and associated cyclin-dependent kinase complexes allow hepatocytes to enter the cell cycle. In this review article, we comprehensively summarize the current knowledge regarding the roles and mechanisms of these hormones in liver regeneration. Articles used for this review were identified by searching MEDLINE and EMBASE databases from inception through June 1, 2019.
Collapse
Key Words
- CDK, cyclin-dependent kinase
- EGF, epidermal growth factor
- EGFR, EGF receptor
- ERK, extracellular signal-regulated kinase
- FAH, fumarylacetoacetate hydrolase
- GH, growth hormone
- Ghr-/-, growth hormone receptor gene knockout
- HGF, hepatocyte growth factor
- HNF, hepatocyte nuclear factor
- HPC, hepatic progenitor cell
- IGF, insulinlike growth factor
- IL, interleukin
- IR, insulin receptor
- InsP3, inositol 1,4,5-trisphosphate
- JNK, JUN N-terminal kinase
- LDLT, living donor liver transplant
- LRP, low-density lipoprotein-related protein
- MAPK, mitogen-activated protein kinase
- NF-κβ, nuclear factor κβ
- NOS, nitric oxide synthase
- NTBC, 2-nitro-4-trifluoro-methyl-benzoyl-1,3-cyclohexanedione
- PCNA, proliferating cell nuclear antigen
- PCR, polymerase chain reaction
- PH, partial hepatectomy
- PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase
- PKB, protein kinase B
- PTU, 6-n-propyl-2-thiouracil
- ROS, reactive oxygen species
- STAT, signal transducer and activator of transcription
- T3, triiodothyronine
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- TR, thyroid receptor
- hESC, human embryonic stem cell
- hiPSC, human induced pluripotent stem cells
- mRNA, messenger RNA
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
| | - Wei Zhou
- Division of Transplantation Surgery, Mayo Clinic, Rochester, MN.,First Affiliated Hospital of China, Medical University, Department of Hepatobiliary Surgery, Shenyang, China
| | - Scott L Nyberg
- Division of Transplantation Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Tao YC, Chen EQ. Clinical application of stem cell in patients with end-stage liver disease: progress and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:564. [PMID: 32775365 PMCID: PMC7347777 DOI: 10.21037/atm.2020.03.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
End-stage liver disease (ESLD) is life-threatening disease worldwide, and patients with ESLD should be referred to liver transplantation (LT). However, the use of LT is limited by the lacking liver source, high cost and organ rejection. Thus, other alternative options have been explored. Stem cell therapy may be a potential alternative for ESLD treatment. With the potential of self-renewal and differentiation, both hepatic and extrahepatic stem cells have attracted a lot of attention. Among them, multipotent stem cells are most widely studies owing to their characteristics. Multipotent stem cells mainly consist of two subpopulations: hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Accumulating evidences have proved that either bone marrow (BM)-derived HSCs mobilized by granulocyte colony-stimulating factor or MSCs transplantation can improve the biochemical indicators of patients with ESLD. However, there are some challenges to be resolved before stem cells widely used in clinic, including the best stem cell source, the optimal route for stem cells transplantation, and the dose and frequency of stem cell injected. The purpose of this review is to discuss the potential of stem cell in liver diseases, particularly, the clinical progress and challenges of multipotent stem cells in the field of ESLD.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Yang XW, Fu XH, Zhang YJ. Clinical and pathological characteristics of cholangiolocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2019; 27:1114-1117. [DOI: 10.11569/wcjd.v27.i18.1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholangiolocellular carcinoma (CLC), due to its special cell origin, has dual clinical and radiological features of hepatocellular carcinoma and cholangiocellular carcinoma, and has a relatively good prognosis due to the characteristics of inert growth. Its growth characteristics and clinical characteristics are obviously different from those of traditional intrahepatic cholangiocarcinoma (ICC). Therefore, CLC is a special type of primary liver malignancy. With regard to cell origin, clinical pathology, growth characteristics, and prognosis, CLC is a distinct disease from traditional hepatic cholangiocarcinoma; however, it is often confused with ICC in the relevant research worldwide. In this paper, we review the clinical and pathological characteristics of CLC to raise the attention to this problem and strengthen the relevant research.
Collapse
Affiliation(s)
- Xin-Wei Yang
- Second Department of Biliary Tract Diseases, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Military Medical University, Shanghai 200438, China
| | - Xiao-Hui Fu
- Second Department of Biliary Tract Diseases, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Military Medical University, Shanghai 200438, China
| | - Yong-Jie Zhang
- Second Department of Biliary Tract Diseases, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Military Medical University, Shanghai 200438, China
| |
Collapse
|
18
|
Fabris L, Fiorotto R, Spirli C, Cadamuro M, Mariotti V, Perugorria MJ, Banales JM, Strazzabosco M. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019; 16:497-511. [PMID: 31165788 PMCID: PMC6661007 DOI: 10.1038/s41575-019-0156-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile duct epithelial cells, also known as cholangiocytes, regulate the composition of bile and its flow. Acquired, congenital and genetic dysfunctions in these cells give rise to a set of diverse and complex diseases, often of unknown aetiology, called cholangiopathies. New knowledge has been steadily acquired about genetic and congenital cholangiopathies, and this has led to a better understanding of the mechanisms of acquired cholangiopathies. This Review focuses on findings from studies on Alagille syndrome, polycystic liver diseases, fibropolycystic liver diseases (Caroli disease and congenital hepatic fibrosis) and cystic fibrosis-related liver disease. In particular, knowledge on the role of Notch signalling in biliary repair and tubulogenesis has been advanced by work on Alagille syndrome, and investigations in polycystic liver diseases have highlighted the role of primary cilia in biliary pathophysiology and the concept of biliary angiogenic signalling and its role in cyst growth and biliary repair. In fibropolycystic liver disease, research has shown that loss of fibrocystin generates a signalling cascade that increases β-catenin signalling, activates the NOD-, LRR- and pyrin domain-containing 3 inflammasome, and promotes production of IL-1β and other chemokines that attract macrophages and orchestrate the process of pericystic and portal fibrosis, which are the main mechanisms of progression in cholangiopathies. In cystic fibrosis-related liver disease, lack of cystic fibrosis transmembrane conductance regulator increases the sensitivity of epithelial Toll-like receptor 4 that sustains the secretion of nuclear factor-κB-dependent cytokines and peribiliary inflammation in response to gut-derived products, providing a model for primary sclerosing cholangitis. These signalling mechanisms may be targeted therapeutically and they offer a possibility for the development of novel treatments for acquired cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Romina Fiorotto
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Carlo Spirli
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | | | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA.
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
19
|
Regulation of Long Non-Coding RNA-Dreh Involved in Proliferation and Migration of Hepatic Progenitor Cells during Liver Regeneration in Rats. Int J Mol Sci 2019; 20:ijms20102549. [PMID: 31137617 PMCID: PMC6566148 DOI: 10.3390/ijms20102549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Liver regeneration plays a significant role in protecting liver function after liver injury or chronic liver disease. Long non-coding RNAs (lncRNAs) are considered to be involved in the proliferation of hepatocytes and liver regeneration. Therefore, this study aimed to explore the effects of LncRNA-Dreh on the regulation of hepatic progenitor cells (HPCs) during liver regeneration in rats. Initially, the rat model of liver injury was established to investigate the effect of LncRNA-Dreh down-regulation on liver tissues of rats with liver injury. Subsequently, HPCs line WB-F344 cells were transfected with interference plasmid of LncRNA-Dreh and the expression of LncRNA-Dreh and Vimentin was detected. The proliferation and migration ability of WB-F344 cells, as well as the content of albumin (ALB) and alpha fetoprotein (AFP) in cell differentiation were then determined. Disorderly arranged structure of liver tissue, a large number of HPCs set portal area as center extended to hepatic lobule and ductular reaction were observed in liver tissues of rats with liver injury. The expression of LncRNA-Dreh decreased while Vimentin increased in liver tissues of rats with liver injury. Moreover, the proliferation and migration ability, expression of Vimentin and AFP in WB-F344 cells were increased after silencing of LncRNA-Dreh and ALB was decreased. Collectively, our findings demonstrate that inhibition of LncRNA-Dreh can enhance the proliferation and migration abilities of HPCs in liver regeneration but cause abnormal differentiation of HPCs.
Collapse
|
20
|
Van Haele M, Snoeck J, Roskams T. Human Liver Regeneration: An Etiology Dependent Process. Int J Mol Sci 2019; 20:ijms20092332. [PMID: 31083462 PMCID: PMC6539121 DOI: 10.3390/ijms20092332] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Regeneration of the liver has been an interesting and well-investigated topic for many decades. This etiology and time-dependent mechanism has proven to be extremely challenging to investigate, certainly in human diseases. A reason for this challenge is found in the numerous interactions of different cell components, of which some are even only temporarily present (e.g., inflammatory cells). To orchestrate regeneration of the epithelial cells, their interaction with the non-epithelial components is of utmost importance. Hepatocytes, cholangiocytes, liver progenitor cells, and peribiliary glands have proven to be compartments of regeneration. The ductular reaction is a common denominator in virtually all liver diseases; however, it is predominantly found in late-stage hepatic and biliary diseases. Ductular reaction is an intriguing example of interplay between epithelial and non-epithelial cells and encompasses bipotential liver progenitor cells which are able to compensate for the loss of the exhausted hepatocytes and cholangiocytes in biliary and hepatocytic liver diseases. In this manuscript, we focus on the etiology-specific damage that is observed in different human diseases and how the liver regulates the regenerative response in an acute and chronic setting. Furthermore, we describe the importance of morphological keynotes in different etiologies and how spatial information is of relevance for every basic and translational research of liver regeneration.
Collapse
Affiliation(s)
- Matthias Van Haele
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Janne Snoeck
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|