1
|
Marin A, Herlea V, Bancu A, Giuglea C, Țăpoi DA, Ciongariu AM, Marin GG, Marinescu SA, Dobrete NA, Dumitru AV, Trambitaș C, Șerban D, Sajin M. Correlation Between the Clinical and Histopathological Results in Experimental Sciatic Nerve Defect Surgery. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:317. [PMID: 40005434 PMCID: PMC11857492 DOI: 10.3390/medicina61020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Peripheral nerve defect regeneration is subject to ongoing research regarding the use of conduits associated with various cells or molecules. This article aims to correlate histopathological and clinical outcomes at the end of a 12-week experiment performed on a rat sciatic nerve model and show which repair method has the best results. Materials and Methods: Forty male Wistar rats were divided into four groups to compare the results of four different methods of reconstruction for sciatic nerve defect: (1) nerve graft-control group, (2) empty aortic conduit, (3) aortic conduit filled with platelet-rich plasma (PRP) and (4) aortic conduit filled with mesenchymal stem cells. There were three clinical examinations: a sensitivity test, a mobility test and a footprint test. After 12 weeks, the nerves were excised and assessed microscopically using conventional Hematoxylin and Eosin staining (HE), special stains and immunohistochemistry (IHC). Results: Nerve regeneration was observed in all batches, both from the clinical and histopathological assessment; the two types of examinations correlated for each batch. Immunohistochemistry and special staining offered a more complete image of the nerve regeneration results. Conclusions: Superior nerve regeneration was achieved using an aortic conduit in combination with either PRP or stem cells, while the empty aortic conduit recorded lesser results.
Collapse
Affiliation(s)
- Andrei Marin
- Plastic Surgery Department, St. John’s Hospital, Carol Davila University, 042122 Bucharest, Romania; (A.M.); (C.G.)
| | - Vlad Herlea
- Pathology Department, “Fundeni” Hospital, Carol Davila University, Fundeni Street, 258, 022328 Bucharest, Romania
| | - Alice Bancu
- Pathology Department, Sante Clinic, 060754 Bucharest, Romania;
| | - Carmen Giuglea
- Plastic Surgery Department, St. John’s Hospital, Carol Davila University, 042122 Bucharest, Romania; (A.M.); (C.G.)
| | - Dana Antonia Țăpoi
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| | - Ana Maria Ciongariu
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| | | | | | | | - Adrian Vasile Dumitru
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| | - Cristian Trambitaș
- Plastic Surgery Department, G. E. Palade University of Medicine, Pharmacy, Science and Technology from Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Dragoș Șerban
- Surgery Department, University Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Sajin
- Pathology Department, University Emergency Hospital, Carol Davila University, 050474 Bucharest, Romania; (D.A.Ț.); (A.M.C.); (A.V.D.); (M.S.)
| |
Collapse
|
2
|
Zimmermann KS, Aman M, Harhaus L, Boecker AH. Improving outcomes in traumatic peripheral nerve injuries to the upper extremity. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:3687-3697. [PMID: 37864051 DOI: 10.1007/s00590-023-03751-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Peripheral nerve lesions of the upper extremity are common and are associated with devastating limitations for the patient. Rapid and accurate diagnosis of the lesion by electroneurography, neurosonography, or even MR neurography is important for treatment planning. There are different therapeutic approaches, which may show individual differences depending on the injured nerve. If a primary nerve repair is not possible, several strategies exist to bridge the gap. These may include autologous nerve grafts, bioartificial nerve conduits, or acellular nerve allografts. Tendon and nerve transfers are also of major importance in the treatment of nerve lesions in particular with long regeneration distances. As a secondary reconstruction, in addition to tendon transfers, there is also the option for free functional muscle transfer. In amputations, the prevention of neuroma is of great importance, for which different strategies exist, such as target muscle reinnervation, regenerative peripheral nerve interface, or neurotized flaps. In this article, we give an overview of the latest methods for the therapy of peripheral nerve lesions.
Collapse
Affiliation(s)
- Kim S Zimmermann
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
- Department of Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Aman
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
- Department of Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
- Department of Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Arne H Boecker
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany.
- Department of Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Maincourt P, Ramiere J, Seizeur R, Hu W, Perruisseau-Carrier A. [Anatomical cartography of the radial nerve at the elbow level for intraradial nerve transfers for finger extension reconstruction in spastic upper limb - A cadaveric study]. ANN CHIR PLAST ESTH 2024; 69:343-354. [PMID: 39107218 DOI: 10.1016/j.anplas.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION Upper limb spasticity is a surgical challenge, both in diminishing agonists spasticity and reconstructing antagonist function. Brachioradialis (BR) is often involved in elbow flexors spasticity. Finger extension is often impaired in spastic patients. This study aims to demonstrate the feasibility of BR motor branch to posterior interosseous nerve (PIN) during BR selective neurectomies, and to describe fascicles topography inside the radial nerve to facilitate PIN dissection. MATERIAL AND METHOD Ten upper limbs from 10 fresh frozen anatomical specimens were dissected. Motor branches to the BR, wrist extensors, supinator, PIN and radial sensory branch were identified. BR to PIN transfer was realized and its feasibility was studies (donor length, tensionless suture). RESULTS BR to PIN transfer was achievable in 9 out of 10 cases. The position of the sensory branch of the radial nerve was inferior or medial in all cases. The position of the PIN was lateral in 90% of the cases. CONCLUSION BR to PIN nerve transfer is achievable in most cases (90%). The lateral topography of the PIN and the inferomedial topography of the sensory branch in most cases allows for an easier intraoperative finding of the PIN when stimulation is not possible. LEVEL IV, feasibility study.
Collapse
Affiliation(s)
- P Maincourt
- Service de chirurgie plastique, reconstructrice et esthétique, CHRU de Brest, hôpital de la Cavale-Blanche, Brest, France
| | - J Ramiere
- Service de chirurgie orthopédique, HIA Clermont Tonnerre Brest, rue Colonel-Fontferrier, 29240 Brest cedex, France
| | - R Seizeur
- Service de neurochirurgie, CHRU de Brest, hôpital de la Cavale-Blanche, Brest, France; Laboratoire d'anatomie de la faculté de médecine de Brest, université de Bretagne Occidentale, Brest, France
| | - W Hu
- Service de chirurgie plastique, reconstructrice et esthétique, CHRU de Brest, hôpital de la Cavale-Blanche, Brest, France
| | - A Perruisseau-Carrier
- Service de chirurgie de la main et des brûlés, CHU de Grenoble Alpes, hôpital Michallon, Grenoble, France.
| |
Collapse
|
4
|
Wang S, Wen X, Fan Z, Ding X, Wang Q, Liu Z, Yu W. Research advancements on nerve guide conduits for nerve injury repair. Rev Neurosci 2024; 35:627-637. [PMID: 38517315 DOI: 10.1515/revneuro-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/23/2024]
Abstract
Peripheral nerve injury (PNI) is one of the most serious causes of disability and loss of work capacity of younger individuals. Although PNS has a certain degree of regeneration, there are still challenges like disordered growth, neuroma formation, and incomplete regeneration. Regarding the management of PNI, conventional methods such as surgery, pharmacotherapy, and rehabilitative therapy. Treatment strategies vary depending on the severity of the injury. While for the long nerve defect, autologous nerve grafting is commonly recognized as the preferred surgical approach. Nevertheless, due to lack of donor sources, neurological deficits and the low regeneration efficiency of grafted nerves, nerve guide conduits (NGCs) are recognized as a future promising technology in recent years. This review provides a comprehensive overview of current treatments for PNI, and discusses NGCs from different perspectives, such as material, design, fabrication process, and composite function.
Collapse
Affiliation(s)
- Shoushuai Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xinggui Wen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zheyuan Fan
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xiangdong Ding
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Qianqian Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zhongling Liu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Wei Yu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| |
Collapse
|
5
|
Tai Y, Tonmoy TI, Win S, Brinkley NT, Park BH, Nam J. Enhanced peripheral nerve regeneration by mechano-electrical stimulation. NPJ Regen Med 2023; 8:57. [PMID: 37848428 PMCID: PMC10582163 DOI: 10.1038/s41536-023-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
To address limitations in current approaches for treating large peripheral nerve defects, the presented study evaluated the feasibility of functional material-mediated physical stimuli on peripheral nerve regeneration. Electrospun piezoelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers were utilized to deliver mechanical actuation-activated electrical stimulation to nerve cells/tissues in a non-invasive manner. Using morphologically and piezoelectrically optimized nanofibers for neurite extension and Schwann cell maturation based on in vitro experiments, piezoelectric nerve conduits were synthesized and implanted in a rat sciatic nerve transection model to bridge a critical-sized sciatic nerve defect (15 mm). A therapeutic shockwave system was utilized to periodically activate the piezoelectric effect of the implanted nerve conduit on demand. The piezoelectric nerve conduit-mediated mechano-electrical stimulation (MES) induced enhanced peripheral nerve regeneration, resulting in full axon reconnection with myelin regeneration from the proximal to the distal ends over the critical-sized nerve gap. In comparison, a control group, in which the implanted piezoelectric conduits were not activated in vivo, failed to exhibit such nerve regeneration. In addition, at both proximal and distal ends of the implanted conduits, a decreased number of damaged myelination (ovoids), an increased number of myelinated nerves, and a larger axonal diameter were observed under the MES condition as compared to the control condition. Furthermore, unlike the control group, the MES condition exhibited a superior functional nerve recovery, assessed by walking track analysis and polarization-sensitive optical coherence tomography, demonstrating the significant potential of the piezoelectric conduit-based physical stimulation approach for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Youyi Tai
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | | | - Shwe Win
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Natasha T Brinkley
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Shoman N. Nerve guide conduits, nerve transfers, and local and free muscle transfer in facial nerve palsy. Curr Opin Otolaryngol Head Neck Surg 2023; 31:306-312. [PMID: 37581264 DOI: 10.1097/moo.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW To highlight the recent literature on reinnervation options in the management of facial nerve paralysis using nerve conduits, and nerve and muscle transfers. RECENT FINDINGS Engineering of natural and synthetic nerve conduits has progressed and many of these products are now available on the market. The use of the masseter nerve has become more popular recently as a choice in nerve transfer procedures due to various unique advantages. Various authors have recently described mimetic muscle reinnervation using more than one nerve transfer, as well as dual and triple innervation of free muscle transfer. SUMMARY The ideal nerve conduit continues to be elusive, however significant progress has been made with many natural and synthetic materials and designs tested and introduced on the market. Many authors have modified the classic approaches in motor nerve transfer, as well as local and free muscle transfer, and described new ones, that aim to combine their advantages, particularly the simplification to a single stage and use of multiple reinnervation to the mimetic muscles. These advances are valuable to the reconstructive surgeon as powerful tools that can be tailored to the unique challenges of patients with facial nerve palsy looking for dynamic reanimation options.
Collapse
Affiliation(s)
- Nael Shoman
- Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Czarnecki P, Huber J, Szymankiewicz-Szukała A, Górecki M, Romanowski L. End-to-Side vs. Free Graft Nerve Reconstruction-Experimental Study on Rats. Int J Mol Sci 2023; 24:10428. [PMID: 37445608 DOI: 10.3390/ijms241310428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The long history of regeneration nerve research indicates many clinical problems with surgical reconstruction to be resolved. One of the promising surgical techniques in specific clinical conditions is end-to-side neurorrhaphy (ETS), described and then repeated with different efficiency in the 1990s of the twentieth century. There are no reliable data on the quality of recipient nerve regeneration, possible donor nerve damage, and epineural window technique necessary to be performed. This research attempts to evaluate the possible regeneration after end-to-side neurorrhaphy, its quality, potential donor nerve damage, and the influence of epineural windows on regeneration efficiency. Forty-five female Wistar rats were divided into three equal groups, and various surgical technics were applied: A-ETS without epineural window, B-ETS with epineural window, and C-free graft reconstruction. The right peroneal nerve was operated on, and the tibial nerve was selected as a donor. After 24 weeks, the regeneration was evaluated by (1) footprint analysis every two weeks with PFI (peroneal nerve function index), TFI (tibial nerve function index), and SFI (sciatic nerve function index) calculations; (2) the amplitude and latency measurements of motor evoked potentials parameters recorded on both sides of the peroneal and tibial nerves when electroneurography with direct sciatic nerve electrical stimulation and indirect magnetic stimulation were applied; (3) histomorphometry with digital conversion of a transverse semithin nerve section, with axon count, fibers diameter, and calculation of axon area with a semiautomated method were performed. There was no statistically significant difference between the groups investigated in all the parameters. The functional indexes stabilized after eight weeks (PFI) and six weeks (TFI and SFI) and were positively time related. The lower amplitude of tibial nerve potential in groups A and B was proven compared to the non-operated side. Neurophysiological parameters of the peroneal nerve did not differ significantly. Histomorphometry revealed significantly lower diameter and area of axons in operated peroneal nerves compared to non-operated nerves. The axon count was at a normal level in every group. Tibial nerve parameters did not differ from non-operated values. Regeneration of the peroneal nerve after ETS was ascertained to be at the same level as in the case of free graft reconstruction. Peroneal nerves after ETS and free graft reconstruction were ascertained to have a lower diameter and area than non-operated ones. The technique of an epineural window does not influence the regeneration result of the peroneal nerve. The tibial nerve motor evoked potentials were characterized by lower amplitudes in ETS groups, which could indicate axonal impairment.
Collapse
Affiliation(s)
- Piotr Czarnecki
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| | - Juliusz Huber
- Department of Pathophysiology of Locomotor Organs, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| | | | - Michał Górecki
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| | - Leszek Romanowski
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| |
Collapse
|
8
|
Ardouin L, Lecoq FA, Verstreken F, Vanmierlo B, Erhard L, Locquet V, Barnouin L, Bosc J, Obert L. Nerve regeneration conduit from inverted human umbilical cord vessel in the treatment of proper palmar digital nerve sections. HAND SURGERY & REHABILITATION 2022; 41:675-680. [PMID: 36210047 DOI: 10.1016/j.hansur.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Treatment of digital nerve injuries, particularly in case of a gap, is challenging. Recovery of finger sensitivity is often incomplete and can impair personal and occupational activity. The need for better nerve regeneration has given rise to alternative treatments such as nerve conduits. This study aimed to evaluate the safety and efficacy of a conduit of freeze-dried inverted human umbilical cord vessel for regeneration in digital nerve section. Twenty-three patients with a mean nerve gap of 6.11 mm (range 2-30 mm and static 2-point discrimination (s2PD) > 15 mm underwent surgical repair of digital nerve section using a nerve regeneration conduit. The primary endpoint was recovery of sensitivity after conduit implantation. Secondary endpoints comprised progression of pain, functional symptoms, pressure threshold, hand-specific symptoms and disabilities, and restored innervation. Mean follow-up was 10.1 ± 4.1 months (range 1-14 months). Sensitivity recovered progressively in the months following implantation. There was a mean decrease of 8.54 mm in s2PD between baseline and last follow-up (p < 0.001). Complete innervation recovered in 83.3% of cases at last follow-up. Pressure threshold and hand-related quality of life improved significantly and symptoms due to nerve sectioning (pain, cold intolerance, hypoesthesia, hyperesthesia) resolved almost completely. There were no safety issues related to the nerve conduit. These results indicate that freeze-dried inverted human umbilical vessels can be a safe and effective option as conduit for digital nerve regeneration.
Collapse
Affiliation(s)
- L Ardouin
- Institut de la Main Nantes-Atlantique, Elsan Santé Atlantique, AV Claude Bernard, 44800 Saint Herblain, France
| | - F-A Lecoq
- Institut de la Main Nantes-Atlantique, Elsan Santé Atlantique, AV Claude Bernard, 44800 Saint Herblain, France
| | - F Verstreken
- AZ Monica, Florent Pauwelslei 1, 2100 Antwerp, Belgium
| | - B Vanmierlo
- AZ Delta, Deltalaan 1, 8800 Roeselare, Belgium
| | - L Erhard
- Institut Chirurgical de la Main et du Membre Supérieur, 17 Av. Condorcet, 69100 Villeurbanne, France
| | - V Locquet
- Institut Chirurgical de la Main et du Membre Supérieur, 17 Av. Condorcet, 69100 Villeurbanne, France
| | - L Barnouin
- Tissue Bank of France (TBF), 6 rue d'Italie, 69780 Mions, France.
| | - J Bosc
- Tissue Bank of France (TBF), 6 rue d'Italie, 69780 Mions, France
| | - L Obert
- CHU de Besançon Hôpital Jean Minjoz, 3 Bd. Alexandre Fleming, 25000 Besançon, France
| |
Collapse
|
9
|
Zhang Q, Burrell JC, Zeng J, Motiwala FI, Shi S, Cullen DK, Le AD. Implantation of a nerve protector embedded with human GMSC-derived Schwann-like cells accelerates regeneration of crush-injured rat sciatic nerves. Stem Cell Res Ther 2022; 13:263. [PMID: 35725660 PMCID: PMC9208168 DOI: 10.1186/s13287-022-02947-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) remain one of the great clinical challenges because of their considerable long-term disability potential. Postnatal neural crest-derived multipotent stem cells, including gingiva-derived mesenchymal stem cells (GMSCs), represent a promising source of seed cells for tissue engineering and regenerative therapy of various disorders, including PNIs. Here, we generated GMSC-repopulated nerve protectors and evaluated their therapeutic effects in a crush injury model of rat sciatic nerves. METHODS GMSCs were mixed in methacrylated collagen and cultured for 48 h, allowing the conversion of GMSCs into Schwann-like cells (GiSCs). The phenotype of GiSCs was verified by fluorescence studies on the expression of Schwann cell markers. GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were co-cultured with THP-1-derived macrophages, and the secretion of anti-inflammatory cytokine IL-10 or inflammatory cytokines TNF-α and IL-1β in the supernatant was determined by ELISA. In addition, GMSCs mixed in the methacrylated collagen were filled into a nerve protector made from the decellularized small intestine submucosal extracellular matrix (SIS-ECM) and cultured for 24 h, allowing the generation of functionalized nerve protectors repopulated with GiSCs. We implanted the nerve protector to wrap the injury site of rat sciatic nerves and performed functional and histological assessments 4 weeks post-surgery. RESULTS GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were directly converted into Schwann-like cells (GiSCs) characterized by the expression of S-100β, p75NTR, BDNF, and GDNF. In vitro, co-culture of GMSCs encapsulated in the 3D-collagen hydrogel with macrophages remarkably increased the secretion of IL-10, an anti-inflammatory cytokine characteristic of pro-regenerative (M2) macrophages, but robustly reduced LPS-stimulated secretion of TNF-1α and IL-1β, two cytokines characteristic of pro-inflammatory (M1) macrophages. In addition, our results indicate that implantation of functionalized nerve protectors repopulated with GiSCs significantly accelerated functional recovery and axonal regeneration of crush-injured rat sciatic nerves accompanied by increased infiltration of pro-regenerative (M2) macrophages while a decreased infiltration of pro-inflammatory (M1) macrophages. CONCLUSIONS Collectively, these findings suggest that Schwann-like cells converted from GMSCs represent a promising source of supportive cells for regenerative therapy of PNI through their dual functions, neurotrophic effects, and immunomodulation of pro-inflammatory (M1)/pro-regenerative (M2) macrophages.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA.
| | - Justin C. Burrell
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jincheng Zeng
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.410560.60000 0004 1760 3078Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808 China
| | - Faizan I. Motiwala
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - Shihong Shi
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - D. Kacy Cullen
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Anh D. Le
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.411115.10000 0004 0435 0884Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
Closing the Gap: Bridging Peripheral Sensory Nerve Defects with a Chitosan-Based Conduit a Randomized Prospective Clinical Trial. J Pers Med 2022; 12:jpm12060900. [PMID: 35743685 PMCID: PMC9224872 DOI: 10.3390/jpm12060900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: If tensionless nerve coaptation is not possible, bridging the resulting peripheral nerve defect with an autologous nerve graft is still the current gold standard. The concept of conduits as an alternative with different materials and architectures, such as autologous vein conduits or bioartificial nerve conduits, could not replace the nerve graft until today. Chitosan, as a relatively new biomaterial, has recently demonstrated exceptional biocompatibility and material stability with neural lineage cells. The purpose of this prospective randomized clinical experiment was to determine the efficacy of chitosan-based nerve conduits in regenerating sensory nerves in the hand. Materials and methods: Forty-seven patients with peripheral nerve defects up to 26 mm distal to the carpal tunnel were randomized to receive either a chitosan conduit or an autologous nerve graft with the latter serving as the control group. Fifteen patients from the conduit group and seven patients from the control group were available for a 12-month follow-up examination. The primary outcome parameter was tactile gnosis measured with two-point discrimination. The secondary outcome parameters were Semmens Weinstein Monofilament Testing, self-assessed pain, and patient satisfaction. Results: Significant improvement (in static two-point discrimination) was observed six months after trauma (10.7 ± 1.2 mm; p < 0.05) for chitosan-based nerve conduits, but no further improvement was observed after 12 months of regeneration (10.9 ± 1.3 mm). After six months and twelve months, the autologous nerve graft demonstrated comparable results to the nerve conduit, with a static two-point discrimination of 11.0 ± 2.0 mm and 7.9 ± 1.1 mm. Semmes Weinstein Filament Testing in the nerve conduit group showed a continuous improvement over the regeneration period by reaching from 3.1 ± 0.3 after three months up to 3.7 ± 0.4 after twelve months. Autologous nerve grafts presented similar results: 3.3 ± 0.4 after three months and 3.7 ± 0.5 after twelve months. Patient satisfaction and self-reported pain levels were similar between the chitosan nerve conduit and nerve graft groups. One patient required revision surgery due to complications associated with the chitosan nerve tube. Conclusion: Chitosan-based nerve conduits are safe and suitable for bridging nerve lesions up to 26 mm in the hand. Tactile gnosis improved significantly during the early regeneration period, and functional outcomes were similar to those obtained with an autologous nerve graft. Thus, chitosan appears to be a sufficient substitute for autologous nerve grafts in the treatment of small nerve defects in the hand.
Collapse
|
11
|
Bai J, Liu C, Kong L, Tian S, Yu K, Tian D. Electrospun Polycaprolactone (PCL)-Amnion Nanofibrous Membrane Promotes Nerve Regeneration and Prevents Fibrosis in a Rat Sciatic Nerve Transection Model. Front Surg 2022; 9:842540. [PMID: 35372465 PMCID: PMC8971199 DOI: 10.3389/fsurg.2022.842540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Functional recovery after peripheral nerve injury repair is typically unsatisfactory. An anastomotically poor microenvironment and scarring at the repair site are important factors impeding nerve regeneration. In this study, an electrospun poly-e-caprolactone (PCL)-amnion nanofibrous membrane comprising an amnion membrane and nonwoven electrospun PCL was used to wrap the sciatic nerve repair site in the rat model of a sciatic nerve transection. The effect of the PCL-amnion nanofibrous membrane on improving nerve regeneration and preventing scarring at the repair site was evaluated by expression of the inflammatory cytokine, sciatic functional index (SFI), electrophysiology, and histological analyses. Four weeks after repair, the degree of nerve adhesion, collagen deposition, and intraneural macrophage invasion of the PCL-amnion nanofibrous membrane group were significantly decreased compared with those of the Control group. Moreover, the PCL-amnion nanofibrous membrane decreased the expression of pro-inflammatory cytokines such as interleukin(IL)-6, Tumor Necrosis Factor(TNF)-a and the number of pro-inflammatory M1 macrophages, and increased the expression of anti-inflammatory cytokine such as IL-10, IL-13 and anti-inflammatory M2 macrophages. At 16 weeks, the PCL-amnion nanofibrous membrane improved functional recovery, including promoting nerve Schwann cell proliferation, axon regeneration, and reducing the time of muscle denervation. In summary, the PCL-amnion nanofibrous membrane effectively improved nerve regeneration and prevent fibrosis after nerve repair, which has good clinical application prospect for tissue repair.
Collapse
Affiliation(s)
- Jiangbo Bai
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunjie Liu
- Department of Orthopedics, Tangshan Workers Hospital, Tangshan, China
| | - Lingde Kong
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siyu Tian
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kunlun Yu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dehu Tian
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dehu Tian
| |
Collapse
|
12
|
Lee HS, Jeon EY, Nam JJ, Park JH, Choi IC, Kim SH, Chung JJ, Lee K, Park JW, Jung Y. Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomater 2022; 141:219-232. [PMID: 35081432 DOI: 10.1016/j.actbio.2022.01.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury causes severe loss of motor and sensory functions, consequently increasing morbidity in affected patients. An autogenous nerve graft is considered the current gold standard for reconstructing nerve defects and recovering lost neurological functions; however, there are certain limitations to this method, such as limited donor nerve supply. With advances in regenerative medicine, recent research has focused on the fabrication of tissue-engineered nerve grafts as promising alternatives to the autogenous nerve grafts. In this study, we designed a nerve guidance conduit using an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane with a visible light-crosslinked gelatin hydrogel. The PLCL nanoporous membrane with permeability served as a flexible and non-collapsible epineurium for the nerve conduit; the inner-aligned gelatin hydrogel paths were fabricated via 3D printing and a photocrosslinking system. The resultant gelatin hydrogel with microgrooved surface pattern was established as a conducting guidance path for the effective regeneration of axons and served as a reservoir that can incorporate and release bioactive molecules. From in vivo performance tests using a rat sciatic nerve defect model, our PLCL/gelatin conduit demonstrated successful axonal regeneration, remyelination capacities and facilitated functional recovery. Hence, the PLCL/gelatin conduit developed in this study is a promising substitute for autogenous nerve grafts. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits (NGCs) are developed as promising recovery techniques for bridging peripheral nerve defects. However, there are still technological limitations including differences in the structures and components between natural peripheral nerve and NGCs. In this study, we designed a NGC composed of an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane and 3D printed inner gelatin hydrogel to serve as a flexible and non-collapsible epineurium and a conducting guidance path, respectively, to mimic the fascicular structure of the peripheral nerve. In particular, in vitro cell tests clearly showed that gelatin hydrogel could guide the cells and function as a reservoir that incorporate and release nerve growth factor. From in vivo performance tests, our regenerative conduit successfully led to axonal regeneration with effective functional recovery.
Collapse
Affiliation(s)
- Hyun Su Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Young Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Jun Nam
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - In Cheul Choi
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
13
|
Wu S, Qi Y, Shi W, Kuss M, Chen S, Duan B. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomater 2022; 139:91-104. [PMID: 33271357 PMCID: PMC8164650 DOI: 10.1016/j.actbio.2020.11.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
Development of multifunctional tube-filling materials is required to improve the performances of the existing nerve guidance conduits (NGCs) in the repair of long-gap peripheral nerve (PN) injuries. In this study, composite nanofiber yarns (NYs) based on poly(p-dioxanone) (PPDO) biopolymer and different concentrations of carbon nanotubes (CNTs) were manufactured by utilizing a modified electrospinning apparatus. We confirmed the successful incorporation of CNTs into the PPDO nanofibers of as-fabricated composite NYs. The PPDO/CNT NYs exhibited similar morphology and structure in comparison with pure PPDO NYs. However, the PPDO/CNT NYs showed obviously enhanced mechanical properties and electrical conductivity compared to PPDO NYs. The biological tests revealed that the addition of CNTs had no negative effects on the cell growth, and proliferation of rabbit Schwann cells (rSCs), but it better maintained the phenotype of rSCs. We also demonstrated that the electrical stimulation (ES) significantly enhanced the differentiation capability of human adipose-derived mesenchymal stem cells (hADMSCs) into SC-like cells (SCLCs) on the PPDO/CNT NYs. More importantly, a unique combination of ES and chemical induction was found to further enhance the maturation of hADMSC-SCLCs on the PPDO/CNT NYs by notably upregulating the expression levels of SC myelination-associated gene markers and increasing the growth factor secretion. Overall, this study showed that our electrically conductive PPDO/CNT composite NYs could provide a beneficial microenvironment for various cell activities, making them an attractive candidate as NGC-infilling substrates for PN regeneration applications. STATEMENT OF SIGNIFICANCE: The morphology, microstructure, and bioelectrical properties of conductive PPDO/CNT NYs have been explored for guiding or controlling cell behaviors. The PPDO/CNT NYs exhibited improved mechanical properties and increased electrical conductivity compared to the CNT-free PPDO NYs. They also presented an obviously enhanced biocompatibility by effectively maintaining the phenotype of rSCs. In addition, when hADMSCs were seeded and cultured on the conductive PPDO/CNT NYs, CI was demonstrated to promote the SC-related growth factor secretion of hADMSCs, and ES was demonstrated to improve the phenotypic maturation of hADMSCs into myelinating SCLCs. Moreover, the combination of CI and ES was found to further synergistically enhance the maturation of hADMSC-SCLCs. The achievement of conductive PPDO/CNT NYs shows potential for application as NGC-infilling substrates for PN regeneration.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China; Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
14
|
Techniques to prevent symptomatic neuroma in digital amputations. HAND SURGERY & REHABILITATION 2022; 41:234-239. [DOI: 10.1016/j.hansur.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022]
|
15
|
Hansson ML, Chatterjee U, Francis J, Arndt T, Broman C, Johansson J, Sköld MK, Rising A. Artificial spider silk supports and guides neurite extension in vitro. FASEB J 2021; 35:e21896. [PMID: 34634154 DOI: 10.1096/fj.202100916r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
Surgical intervention with the use of autografts is considered the gold standard to treat peripheral nerve injuries. However, a biomaterial that supports and guides nerve growth would be an attractive alternative to overcome problems with limited availability, morbidity at the site of harvest, and nerve mismatches related to autografts. Native spider silk is a promising material for construction of nerve guidance conduit (NGC), as it enables regeneration of cm-long nerve injuries in sheep, but regulatory requirements for medical devices demand synthetic materials. Here, we use a recombinant spider silk protein (NT2RepCT) and a functionalized variant carrying a peptide derived from vitronectin (VN-NT2RepCT) as substrates for nerve growth support and neurite extension, using a dorsal root ganglion cell line, ND7/23. Two-dimensional coatings were benchmarked against poly-d-lysine and recombinant laminins. Both spider silk coatings performed as the control substrates with regards to proliferation, survival, and neurite growth. Furthermore, NT2RepCT and VN-NT2RepCT spun into continuous fibers in a biomimetic spinning set-up support cell survival, neurite growth, and guidance to an even larger extent than native spider silk. Thus, artificial spider silk is a promising biomaterial for development of NGCs.
Collapse
Affiliation(s)
- Magnus L Hansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juanita Francis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tina Arndt
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christian Broman
- Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mattias K Sköld
- Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|